MEMORANDUM

TO: Mr. Michael Larkin **FROM:** Scott W. Thornton, P.E. and

Larkin Real Estate Group, Inc.

Jennifer Conners

P.O. Box 129 Vanasse & Associates, Inc.

35 New England Business Center Drive

Suite 140

Andover, MA 01810-1066

DATE: July 1, 2022 **RE:** 9398

SUBJECT: Transportation Impact Assessment Memorandum

Proposed Residential Development – 159 Beach Road

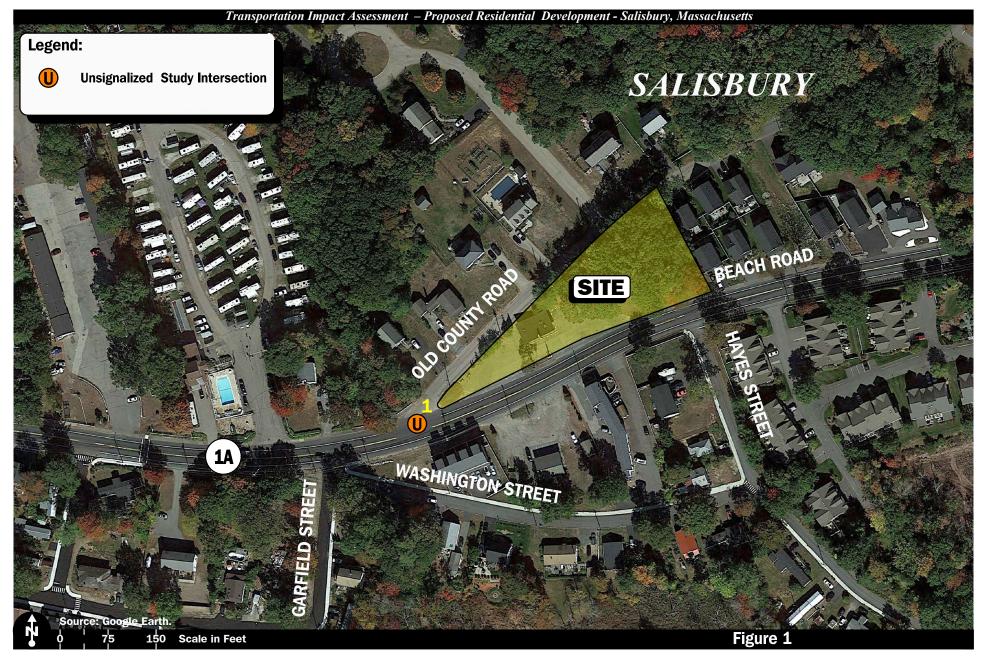
Salisbury, Massachusetts

Medfield, MA 02052

Vanasse & Associates, Inc. (VAI) has prepared this Transportation Impact Assessment Memorandum in order to determine the potential impacts on the transportation infrastructure associated with the Proposed Residential development to be located at 159 Beach Road in Salisbury, Massachusetts (hereafter referred to as the "Project"). This memorandum identifies and analyzes traffic conditions, both with and without the project, safety considerations, and potential improvements to improve operation of roadway facilities.

PROJECT DESCRIPTION

The proposed Project entails construction of 10 duplex buildings plus 3 single family dwellings. All duplex units will have two (2) bedrooms and the single unit dwellings will have three (3) bedrooms. As part of this Project, parking will be provided in individual driveways for a minimum ratio of 2 parking spaces per unit. An additional 12 parking spaces will be provided on site for visitors use. Access to the 3 single family dwellings and 2 duplex buildings will be provided by individual driveways off Beach Road (Route 1A). Access to the remaining 8 duplex buildings will be provided by individual driveways off Old County Road. At present, the project site consists of a vacant commercial building and is bounded by residential properties. All existing structures on-site will be demolished as part of this Project. Figure 1 depicts the Project site location in relation to the existing roadway network.


STUDY METHODOLOGY

This study was prepared in consultation with the Town of Salisbury and in accordance with the Massachusetts Department of Transportation (MassDOT) Guidelines for Transportation Impact Assessments (TIAs) and was conducted pursuant to the standards of the Traffic Engineering and Transportation Planning Professions for the preparation of such reports; and was conducted in three distinct stages.

The first stage involved an assessment of existing conditions in the study area and included an inventory of roadway geometrics; observations of traffic flow; and collection of daily and peak period traffic counts.

In the second stage of the study, future traffic conditions were projected and analyzed. Specific travel demand forecasts for the Project were assessed along with future traffic demands due to expected traffic

Site Location and Study Area Map

growth independent of the Project. A seven-year time horizon was selected for analyses consistent with state guidelines for the preparation of TIAs. The traffic analysis conducted in stage two identifies existing or projected future roadway capacity, traffic safety, and site access issues.

The third stage of the study presents and evaluates measures to address traffic and safety issues, if any, identified in stage two of the study.

EXISTING CONDITIONS

A comprehensive field inventory of traffic conditions on the study area roadways was conducted in June 2021. The field investigation consisted of an inventory of existing roadway geometrics, pedestrian facilities, traffic volumes, and operating characteristics, as well as posted speed limits and land use information for the roadways that provide access to the Project including Beach Road and Old County Road as well as the intersection of Beach Road at Old County Road.

The following describes the study area geometric conditions.

GEOMETRY

Beach Road

Beach Road is an Urban Minor Arterial roadway extending in a generally west/east direction through the Town of Salisbury and into New Hampshire. Within the study area, Beach Road is under Massachusetts Department of Transportation (MassDOT) jurisdiction and provides one 12-foot wide travel lane in each direction separated by a double yellow centerline with 7- to 9-foot wide shoulders present. The posted speed limit in the vicinity of the site is 35 miles per hour (mph) in the westbound direction and 40 mph in the eastbound direction. Illumination is provided by way of streetlights. Land use within the study area consists of residential properties.

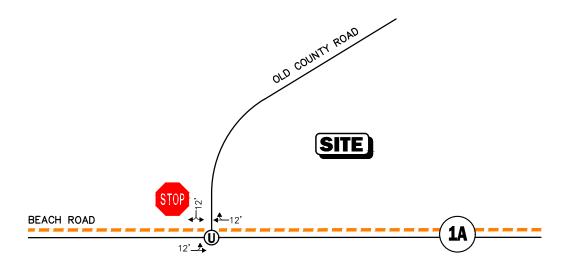
Old County Road

Old County Road is a local roadway extending in a generally west/east direction. Within the study area, Old County Road is under local jurisdiction and provides one 12-foot wide travel lane in each direction with no pavement markings. The posted speed limit in the vicinity of the site is 30 miles per hour (mph). Within the study area, no pedestrian or bicycle facilities were identified. Illumination is provided by way of streetlights. Land use within the study area consists of residential properties.

Figure 2 summarizes existing lane use and travel lane widths at the study area intersection as observed in June 2022.

EXISTING TRAFFIC VOLUMES

In order to establish base traffic-volume conditions within the study area, manual turning movement counts (TMCs) were completed on Thursday, June 16, 2022. The TMCs were conducted during the weekday morning (7:00 to 9:00 AM) and weekday evening (4:00 to 6:00 PM) peak periods, which represent the peak periods for residential traffic.


Unsignalized Intersection

Sidewalk

Lane Use and Travel Lane Width

Figure 2

Existing Intersection Lane Use, Travel Lane Width and Pedestrian Facilities

Traffic Adjustment

In accordance with MassDOT guidelines, traffic counts collected in 2022 may not be representative of typical traffic volumes due to the effects of the COVID-19 pandemic. In order to determine whether a pandemic adjustment should be made to the June 2022 traffic counts, count data from the MassDOT permanent count station ID 5128, located close by the site were reviewed. Traffic-volume data collected at this continuous count station in June 2022 was compared to June 2019 traffic volumes that were collected at the same location. Based on this pre- and post-COVID-19 traffic data comparison, the 2022 traffic-volume data that was collected as a part of this assessment was adjusted upward by an additional 7 percent during the weekday morning and evening peak hours and 21 percent during a daily basis, in order to account for the reduced traffic volumes, an approach consistent with MassDOT guidelines. Although traffic levels have been steadily increasing over the last several months, available traffic data suggests that traffic conditions have not yet returned to pre-pandemic levels.

Seasonal Adjustment

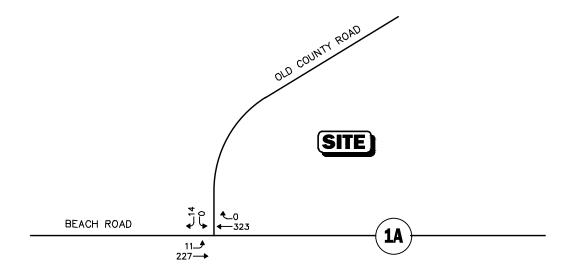
In addition to developing correction factors for COVID-19, adjustments were made to account for seasonal fluctuations in traffic. The MassDOT permanent count station ID 5128 was used to evaluate the traffic volumes for seasonal fluctuations. Based on this data, it was determined that June traffic volumes are approximately 9 percent above average-month conditions for this station. As such, the June traffic volumes was not adjusted downward to average-month conditions, as they are representative of traffic volume conditions and are higher than those under average-month conditions.

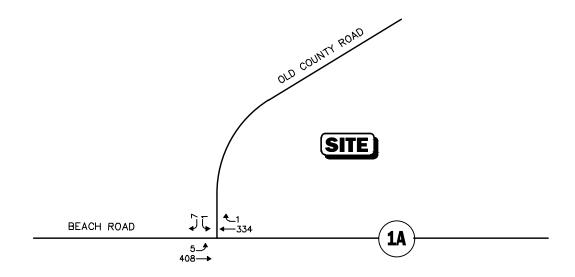
The 2022 Existing traffic volumes are summarized in Table 1, with the weekday morning and evening peak-hour traffic volumes graphically depicted on Figure 3. It is important to note that the peak-hour traffic volumes presented in Table 1 were obtained from the TMCs and are reflected on the aforementioned figure.

Table 1
EXISTING ROADWAY TRAFFIC-VOLUME SUMMARY

	Daily	Wee	kday Morning F (8:00 – 9:00 A		Wee	ekday Evening P (4:15 – 5:15 P	
Location	Volume (vpd) ^a	Volume (vph) ^b	Percent of Daily Traffic	Predominant Flow	Volume (vph)	Percent of Daily Traffic	Predominant Flow
Beach Road, west of Old County Road	8,400	575	6.9	59% WB	754	9.0	55% EB

^aTwo-way daily traffic expressed in vehicles per day (estimated).


As can be seen in Table 1, Beach Road west of Old County Road was found to accommodate approximately 575 vehicles per hour (vph) during the weekday morning peak hour and 754 vph during the weekday evening peak hour. Beach Road is estimated to carry approximately 8,400 vehicles on an average weekday (24-hour, two-way volume). The predominant flow on Beach Road during the weekday morning peak hour is in the eastbound direction.


^bManual turning movement counts conducted in June 2022 (adjusted).

^cThe percent of daily traffic that occurs during the peak hour.

WB= westbound; EB= eastbound.

WEEKDAY EVENING PEAK HOUR (4:15 - 5:15 PM)

PEDESTRIAN AND BICYCLE FACILITIES

A comprehensive field inventory of pedestrian and bicycle facilities within the study area was undertaken in June 2022. The field inventory consisted of a review of the location of sidewalks and pedestrian crossing locations along the study roadway and at the study intersections, as well as the location of existing and planned future bicycle facilities. As detailed on Figure 2, sidewalks are only provided along the north side of Beach Road within the study area. No bicycle facilities currently exist or are planned in the area; however, the shoulder width on Beach Road is sufficient to accommodate bicyclists based on MassDOT guidelines.

PUBLIC TRANSPORTATION

Public transportation services are provided within the study area by the Merrimack Valley Transportation Authority (MVRTA) for fixed and seasonal bus routes. Within the study area the MVRTA operates the following bus service:

- Route 54 Amesbury-Newburyport-Salisbury Route 54 provides access from Salisbury Beach to Amesbury and Newburyport. This route stops at the intersection of Beach Road with Washington Street and is approximately 300 ft from the proposed project site. Starting from March 1, 2022 all MVRTA fixed routes are fare-free.
- Route 83 Amesbury to Salisbury Route 83 provides access from the Nicholas Costello Transportation Center in Amesbury to Salisbury Beach to the east. Route 83 is a peak summer seasonal route only.

In addition to the MVRTA fixed-bus routes, the Massachusetts Bay Transportation Authority (MBTA) provides commuter rail service. The MBTA Newburyport/Rockport line provides service between North Station in Boston and Rockport. The closest MBTA Commuter Rail station is located in Newburyport which is located 6 miles south from the project site.

The public transportation schedules and fare information are provided in the Appendix.

VEHICLE SPEEDS

Existing vehicle speeds along Beach Road were recorded to determine the average and the 85th percentile speed. The results of the speed measurements are shown in Table 2.

Table 2
OBSERVED VEHICLE SPEEDS – BEACH ROAD

	Beach Road Westbound	Beach Road Eastbound
Mean Travel Speed (mph)	38	37
85th Percentile Speed (mph)	40	41
Speed Limit (mph)	35	40

mph = miles per hour.

As can be seen in Table 2, the mean (average) vehicle travel speed along Beach Road in the vicinity of the project site was found to be approximately 38 mph in the westbound and approximately 37 mph eastbound direction. The measured 85th percentile vehicle travel speed, or the speed at which 85 percent of the observed vehicles traveled at or below, was found to be approximately 40 mph in the westbound direction and 41 mph the eastbound direction.

SAFETY ANALYSIS

In order to evaluate whether there are any notable trends that would indicate potential safety deficiencies within the study area, a motor vehicle accident analysis was conducted in accordance with State guidelines as described below.

Vehicle Accident Data

Motor vehicle accident data was acquired from the MassDOT Safety Management/Traffic Operations Unit for the most recent five-year period available (2015 through 2019) in order to examine motor vehicle accident trends occurring within the study area. The data is summarized by intersection, type, and severity, and is presented in Table 3.

As summarized in Table 3, the intersection of Beach Road at Old County Road experienced one (1) accident over the five-year review period, which is an average of 0.2 accidents per year. This accident occurred in a sunny daylight period around 11:00 AM where two vehicles were traveling straight ahead in the eastbound direction, towards Beach direction. A vehicle collided with the back of a second vehicle (rear-end collision) and potentially caused injury to one of the drivers.

This intersection was found to have a motor vehicle crash rate *below* the MassDOT average for the District in which the Project is located (District 4). No fatalities were reported over the five-year period reviewed. In addition, the Highway Safety Improvement Program (HSIP) database was reviewed, and this intersection is not listed as an HSIP-eligible cluster in the most recent (2017 through 2019) HSIP cluster listing. The detailed MassDOT Crash Rate Worksheets are provided in the Appendix.

Table 3
MOTOR VEHICLE CRASH DATA SUMMARY^a

Scenario	Beach Road at Old County Road
Year:	
2015	0
2016	0
2017	0
2018	0
<u>2019</u>	<u>0</u>
Total	1
Average ^b	0.2
Crash Rate ^c	0.39
Signifigance ^d	No
Туре:	
Angle	0
Rear-End	1
Head-On	0
Sideswipe	0
Fixed Object	0
<u>Other</u>	<u>0</u>
Total	1
Weather Conditions:	
Clear	1
Cloudy/Rain	0
Snow/Ice	0
Fog	0
<u>Unknown</u>	$\frac{0}{1}$
Total	1
Lighting Conditions:	
Daylight	1
Dawn/Dusk	0
Dark (lit)	0
Dark (unlit)	0
<u>Unknown</u>	<u>0</u>
Total	1
Pavement Conditions:	
Dry	1
Wet	0
Snow/Ice	0
<u>Unknown/ Other</u>	<u>0</u> 1
Total	1
Severity:	
Property Damage Only	0
Personal Injury	1
Fatality	0
<u>Unknown</u>	<u>0</u>
Total	1

^aSource: MassDOT Safety Management/Traffic Operations Unit records, 2015 through 2019.

^dUnsignalized intersections are significant if rate 0.57 crashes per mev for locations within District 4.

^bAverage crashes over five-year period.

^cCrash rate per million entering vehicles (mev).

FUTURE CONDITIONS

Traffic volumes in the study area were projected to the year 2029, which reflects a seven-year planning horizon consistent with MassDOT's *Transportation Impact Assessment (TIA) Guidelines*. Independent of the Project, traffic volumes on the roadway network in the year 2029 under No-Build conditions include all existing traffic and new traffic resulting from background traffic growth. Anticipated Project-generated traffic volumes superimposed upon this 2029 No-Build traffic network reflect the 2029 Build conditions with the Project.

FUTURE TRAFFIC GROWTH

Future traffic growth is a function of the expected land development in the immediate area and the surrounding region. Several methods can be used to estimate this growth. A procedure frequently employed estimates an annual percentage increase in traffic growth and applies that percentage to all traffic volumes under study. The drawback to such a procedure is that some turning volumes may actually grow at either a higher or a lower rate at particular intersections.

An alternative procedure identifies the location and type of planned development, estimates the traffic to be generated, and assigns it to the area roadway network. This procedure produces a more realistic estimate of growth for local traffic. However, the drawback of this procedure is that the potential growth in population and development external to the study area would not be accounted for in the traffic projections.

To provide a conservative analysis framework, both procedures were used, the salient components of which are described below.

General Background Traffic Growth

Traffic-volume data compiled by MassDOT from permanent count stations and historic traffic counts in the area were reviewed in order to determine general background traffic growth trends. Based on this data, it was determined that traffic volumes within the study area have fluctuated over the past several years. In order to be consistent with previous traffic studies in the area, a 1.0 percent per year compounded annual background traffic growth rate was used in order to account for future traffic growth and presently unforeseen development within the study area.

Specific Development by Others

The Town of Salisbury Planning Board was contacted in order to determine if there were any projects planned within the study area that would have an impact on future traffic volumes within the study area. No background projects were identified at this time that are expected to result in a significant increase in traffic within the study area beyond the background traffic growth rate.

Roadway Improvement Projects

The Town of Salisbury Planning Board was contacted in order to determine if there are any planned roadway improvement projects expected to be completed within the study area and seven-year time frame. No roadway improvements beyond typical maintenance were identified.

NO-BUILD TRAFFIC VOLUMES

The 2029 No-Build condition peak-hour traffic-volumes were developed by applying the 1.0 percent per year compounded annual background traffic growth rate to the 2022 Baseline condition peak-hour traffic volumes. The resulting 2029 No-Build weekday morning and evening peak-hour traffic volumes are shown on Figure 4.

PROJECT-GENERATED TRAFFIC

The proposed Project entails construction of 10 duplex buildings with a total of 20 units plus 3 single family dwellings. In order to develop the anticipated traffic characteristics of the Project, trip-generation statistics published by ITE ¹ were reviewed. ITE Lane Use Code (LUC) 210, *Single-Family Detached Housing* and LUC 220, *Multifamily Housing Attached Housing (Low Rise)* was used to develop the traffic characteristics of the proposal. Trip-generation calculations were performed for a typical weekday as well as the weekday morning and evening peak hours. These are critical time periods for Project-related traffic activity.

Based upon *Means of Transportation to Work* from the U.S. Census, approximately 14 percent of trips in Salisbury are either public transportation or walking or work from home. Public transportation services are limited to one line in the immediate proximity of the Project site. Due to the Project location and limited public transit options, the transit usage was neglected and for analysis purpose no credit for non-auto trip reductions was used. The detailed trip-generation calculations are provided in the Appendix. A summary of the expected vehicle trip-generation is summarized in Table 4.

Table 4
PROPOSED SITE TRIP-GENERATION SUMMARY

Time Period/ Directional Distribution	Proposed Single Family Housing (3-units) ^a	Proposed Duplex Units (20-units) ^b	Total New Trips
Weekday Daily	28	136	164
Weekday Morning Peak Hour: Entering Exiting Total	0 <u>2</u> 2	2 <u>6</u> 8	2 <u>8</u> 10
Weekday Evening Peak Hour: Entering Exiting Total	$\begin{array}{c} 2\\ \frac{1}{3} \end{array}$	6 <u>4</u> 10	8 <u>5</u> 13

^aBased on ITE LUC 210, Single-Family Detached Housing

As shown in Table 4, the proposed residential development is expected to generate approximately 164 new

^aBased on ITE LUC 220, Multifamily Housing Attached Housing(Low Rise)

WEEKDAY MORNING PEAK HOUR

WEEKDAY EVENING PEAK HOUR

vehicle trips on an average weekday (two-way, 24-hour volume), with 10 new vehicle trips (2 entering and 8 exiting) expected during the weekday morning peak hour and 13 new vehicle trips (8 entering and 5 exiting) expected during the weekday evening peak hour.

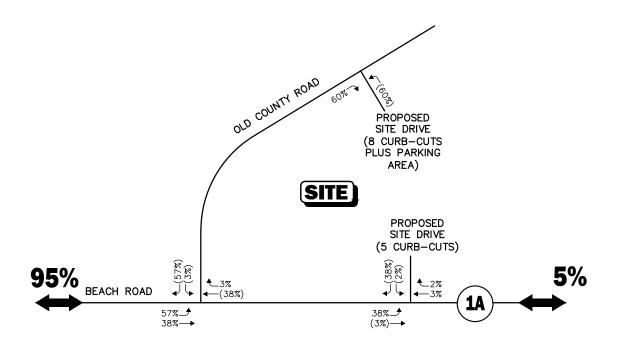
TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated trips to and from the proposed development were determined based on a review of the Journey-to-Work data obtained from the United States Census Bureau² and then refined based on existing traffic patterns within the study area. The general trip distribution for the Project is summarized in Table 5 and graphically depicted on Figure 5.

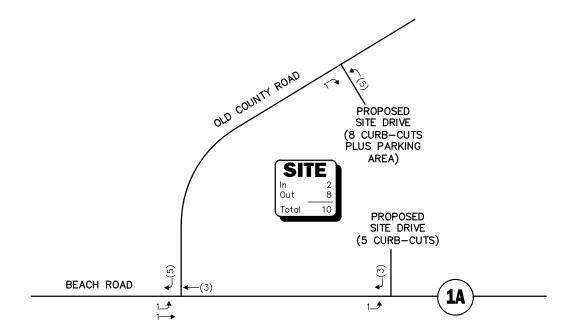
Table 5
TRIP-DISTRIBUTION SUMMARY

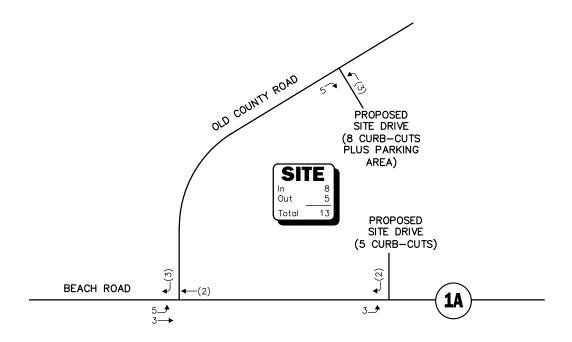
Roadway	Direction (To/From)	(To/From)
Beach Road	West	95
Beach Road	East	<u>5</u>
TOTAL		100

The weekday morning and weekday evening peak-hour traffic volumes expected to be generated by the residential development were assigned on the study area roadway network as shown on Figure 6.

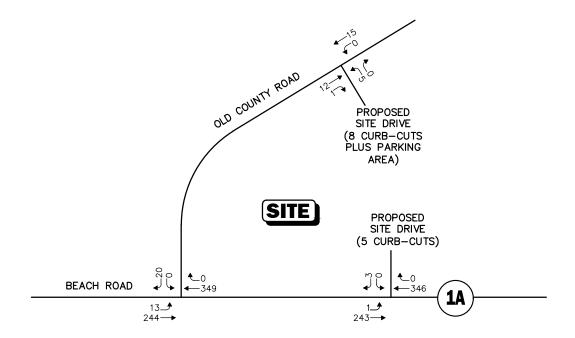

FUTURE TRAFFIC VOLUMES – BUILD CONDITION

The 2029 Build condition networks consist of the 2029 No-Build traffic volumes, plus the proposed site-generated traffic added to them. The 2029 Build weekday morning and weekday evening peak-hour traffic-volume networks are graphically depicted on Figure 7. A summary of peak-hour projected traffic-volume increases external to the study area that is the subject of this assessment is shown in Table 6. These volumes are based on the expected increases from the Project.


²Table 3. Residence MCD/County to Workplace MCD/County Commuting Flows for the United States and Puerto Rico Sorted by Residence Geography: 5-Year ACS, 2011-2015.


Note: This project proposed a total of 13 individual driveways plus a parking area off Old County Road. For purpose of this analysis, the proposed individual driveways were combined into one driveway onto Beach road which will represent 5 curb cuts and one onto Old County Road which will represent 8 curb cuts plus access to the parking area.

WEEKDAY MORNING PEAK HOUR



WEEKDAY EVENING PEAK HOUR

WEEKDAY MORNING PEAK HOUR

WEEKDAY EVENING PEAK HOUR

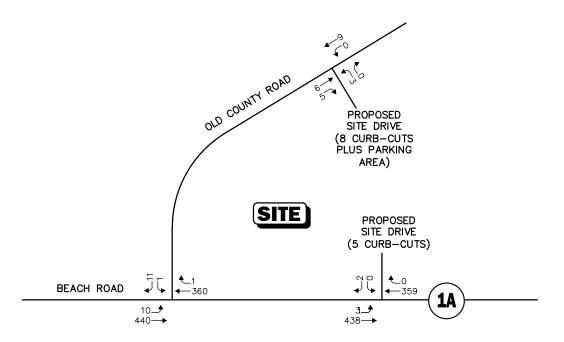


Table 6
PEAK-HOUR TRAFFIC-VOLUME INCREASES

Location/Peak Hour	2029 No Build	2029 Build	Traffic-Volume Increase Over No-Build	Percent Increase Over No-Build
Beach Road, west of Old County Road:				
Weekday Morning	616	626	10	1.6
Weekday Evening	808	821	13	1.6

As shown in Table 6, in comparison to future No-Build conditions, project-related traffic increases are projected to range between 10 to 13 vehicles during peak hours, with traffic percent increases of 1.6 percent.

SIGHT DISTANCE EVALUATION

Sight distance measurements were performed at 2 of the 5 proposed driveways onto Beach Road in accordance with MassDOT and American Association of State Highway and Transportation Officials (AASHTO)³ recommendations. Both stopping sight distance (SSD) and intersection sight distance (ISD) measurements were performed. In brief, SSD is the distance recommended to be provided to a vehicle traveling at the design speed of a roadway, on wet pavement, to stop prior to striking an object in its travel path. ISD or corner sight distance (CSD) is the sight distance recommended to be provided to a driver entering or crossing an intersecting roadway to perceive an on-coming vehicle and safely complete a turning or crossing maneuver with on-coming traffic. In accordance with AASHTO standards, if the measured ISD is at least equal to the recommended SSD value for the appropriate design speed, the intersection can operate in a safe manner. Table 7 presents the measured SSD and ISD at the subject intersections.

³A Policy on Geometric Design of Highway and Streets, 7th Edition; American Association of State Highway and Transportation Officials (AASHTO); Washington D.C.; 2018.

Table 7
SIGHT DISTANCE MEASUREMENTS^a

		Recommen Minimu (Feet) ^b	
Intersection/Sight Distance Measurement	40 mph	45 mph	Measured
Beach Road at the proposed Western Site Driveway	40 mpn	43 mpn	Wicasured
Stopping Sight Distance:			
Beach Road approaching from the west	305	360	500+
Beach Road approaching from the east	305	360	500+
Intersection Sight Distance:			
Looking to the west from the Project Site Driveway	445	500	500+c
Looking to the east from the Project Site Driveway	385	430	500+
Beach Road at the proposed Eastern Site Driveway Stopping Sight Distance:			
Beach Road approaching from the west	305	360	500+
Beach Road approaching from the east	305	360	500+
Intersection Sight Distance:			
Looking to the west from the Project Site Driveway	445	500	500+c
Looking to the east from the Project Site Driveway	385	430	500+

^aRecommended minimum values obtained from *A Policy on Geometric Design of Highways and Streets*, 7th Edition; American Association of State Highway and Transportation Officials (AASHTO); 2018; and based on speeds of 40 mph and 45 mph along Beach Road.

As can be seen in Table 7, the sight distance at Beach Road with site driveway was found to exceed the recommended minimum sight distances, based on the vehicle travel speeds of 40 and 45 mph with the clearing of vegetation within the sight line triangles. Based on AASHTO standards, if the measured ISD is greater than the recommended SSD value, therefore, this driveway will function in a safe manner. VAI recommends that any new plantings (shrubs, bushes) or physical landscape features to be located within driveway sight lines should be maintained at a height of 2 feet or less above the adjacent existing roadway grade to ensure unobstructed lines of sight.

TRAFFIC OPERATIONS ANALYSIS

In order to assess the potential impact of the Project on the roadway network, a detailed traffic operations analysis (motorist delays, vehicle queuing, and level-of-service) was performed for the study intersections. Capacity analyses provide an indication of how well transportation facilities serve the traffic demands placed upon them, with vehicle queue analyses providing a secondary measure of the operational characteristics of an intersection or section of roadway under study.

^bValues shown are the intersection sight distance for a vehicle turning right exiting a roadway under STOP control such that motorists approaching the intersection on the major street should not need to adjust their travel speed to less than 70 percent of their initial approach speed.

^c Clear lines of sight will be provided if existing site vegetation is trimmed.

METHODOLOGY

Levels of Service

A primary result of capacity analyses is the assignment of the level of service to traffic facilities under various traffic-flow conditions. The concept of level-of-service is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to the quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six levels of service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F representing the worst.

Since the level of service of a traffic facility is a function of the traffic flows placed upon it, such a facility may operate at a wide range of levels of service, depending on the time of day, day of week, or period of year.

Unsignalized Intersections

The six levels of service for unsignalized intersections may be described as follows:

- LOS A represents a condition with little or no control delay to minor street traffic.
- LOS B represents a condition with short control delays to minor street traffic.
- >LOS C represents a condition with average control delays to minor street traffic.
- LOS D represents a condition with long control delays to minor street traffic.
- >LOS E represents operating conditions at or near capacity level, with very long control delays to minor street traffic.
- >LOS F represents a condition where minor street demand volume exceeds the capacity of an approach lane, with extreme control delays resulting.

The levels of service of unsignalized intersections are determined by application of a procedure described in the 2010 *Highway Capacity Manual*. Level of service is measured in terms of average control delay. Mathematically, control delay is a function of the capacity and degree of saturation of the lane group and/or approach under study and is a quantification of motorist delay associated with traffic control devices such as traffic signals and STOP signs. Control delay includes the effects of the initial deceleration delay approaching a STOP sign, stopped delay, queue move-up time, and final acceleration delay from a stopped condition. Definitions for level of service at unsignalized intersections are also given in the 2010 *Highway Capacity Manual*. Table 8 summarizes the relationship between level of service and average control delay for two-way stop controlled and all-way stop controlled intersections.

⁴ibid 2

Table 8
LEVEL-OF-SERVICE CRITERIA FOR
UNSIGNALIZED INTERSECTIONS^a

•	olume-to-Capacity Ratio	 Average Control Delay
v/c ≤ 1.0	v/c > 1.0	(Seconds Per Vehicle)
A	F	≤10.0
В	F	10.1 to 15.0
C	F	15.1 to 25.0
D	F	25.1 to 35.0
E	F	35.1 to 50.0
F	F	>50.0

^aSource: *Highway Capacity Manual*; Transportation Research Board; Washington, DC; 2010; page 19-2.

Analysis Results

Level-of-service and vehicle queue analyses were conducted for 2022 Existing, 2029 No-Build, and 2029 Build conditions for the study intersection. The results of the intersection capacity and vehicle queue analyses are summarized for unsignalized intersections in Table 9, with the detailed analysis results presented in the Appendix.

Beach Road at Old County Road

Under all conditions, the critical movements at this unsignalized intersection (all movements from old County Road) were shown to operate at LOS B during the weekday morning and evening peak hours. The project is expected to add approximately 10 to 13 vehicles trips at this intersection during peak hours. This type of increases is minimal and represents a minor change in area roadway volumes, a level of change that falls within normal day-to-day fluctuations in traffic entering and exiting this area.

Beach Road at Site Driveway and Old County Road at Site Driveway

This project proposed a total of 13 individual driveways plus a parking area off Old County Road. For purposes of this analysis, the proposed individual driveways were combined into one driveway onto Beach Road and one onto Old County Road. This approach provides a more conservative analysis and indicates that the actual delays for vehicles exiting the site driveway will be less than here predicted. Overall, the critical movements at the combined site driveway with Beach Road were shown to operate at LOS B during the weekday morning and evening peak hours.

TABLE 9
UNSIGNALIZED INTERSECTION LEVEL-OF-SERVICE AND VEHICLE QUEUE SUMMARY

	2022 E	xisting			2029 No	-Build			2029 I	Build	
Demanda	Delay ^b	LOSc	Queue ^d 95 th	Demand	Delay	LOS	Queue 95 th	Demand	Delay	LOS	Queue 95 th
11		A	0.0			A				A	0.0
14	10.7	В	0.1	15	10.9	В	0.1	20	11.0	В	0.2
5	8.0	A	0.0		8.0	A	0.0	12	8.0	A	0.0
8	11.1	В	0.1	9	11.3	В	0.1	10	11.2	В	0.1
 	 	 	 	 	 	 	 	1 3 12 52	8.2 11.0 8.1 11.2	A B A B	0.0 0.2 0.0 0.1
								5 3	8.7 8.7	A A	0.0
	14	11 8.1 14 10.7 5 8.0	11 8.1 A 14 10.7 B 5 8.0 A 8 11.1 B	Demanda Delayb LOSc 95th 11 8.1 A 0.0 14 10.7 B 0.1 5 8.0 A 0.0 8 11.1 B 0.1	Demanda Delayb LOSc 95th Demand 11 8.1 A 0.0 12 14 10.7 B 0.1 15 5 8.0 A 0.0 5 8 11.1 B 0.1 9	Demanda Delayb LOSc 95th Demand Delay 11 8.1 A 0.0 12 8.2 14 10.7 B 0.1 15 10.9 5 8.0 A 0.0 5 8.0 8 11.1 B 0.1 9 11.3	Demanda Delayb LOSc 95th Demand Delay LOS 11 8.1 A 0.0 12 8.2 A 14 10.7 B 0.1 15 10.9 B 5 8.0 A 0.0 5 8.0 A 8 11.1 B 0.1 9 11.3 B	Demanda Delayb LOSc 95th Demand Delay LOS 95th 11 8.1 A 0.0 12 8.2 A 0.0 14 10.7 B 0.1 15 10.9 B 0.1 5 8.0 A 0.0 5 8.0 A 0.0 8 11.1 B 0.1 9 11.3 B 0.1	Demanda Delayb LOSc 95th Demand Delay LOS 95th Demand 11 8.1 A 0.0 12 8.2 A 0.0 13 14 10.7 B 0.1 15 10.9 B 0.1 20 5 8.0 A 0.0 5 8.0 A 0.0 12 8 11.1 B 0.1 9 11.3 B 0.1 10	Demanda Delayb LOSc 95th Demand Delay LOS 95th Demand Delay 11 8.1 A 0.0 12 8.2 A 0.0 13 8.2 14 10.7 B 0.1 15 10.9 B 0.1 20 11.0 5 8.0 A 0.0 5 8.0 A 0.0 12 8.0 8 11.1 B 0.1 9 11.3 B 0.1 10 11.2 3 11.0 3 11.0 3 11.0 52 11.2	Demand ^a Delay ^b LOS ^c 95 th Demand Delay LOS 95 th Demand Delay LOS 11 8.1 A 0.0 12 8.2 A 0.0 13 8.2 A 14 10.7 B 0.1 15 10.9 B 0.1 20 11.0 B 5 8.0 A 0.0 5 8.0 A 0.0 12 8.0 A 8 11.1 B 0.1 9 11.3 B 0.1 10 11.2 B

^aDemand in vehicles per hour.

NB = northbound; SB = southbound; EB = eastbound; WB = westbound; LT = left-turning movements; TH = through movements; RT = right-turning movements.

^bAverage control delay per vehicle (in seconds).

^cLevel-of-Service.

^dQueue length in vehicles.

SUMMARY

VAI has completed a detailed assessment of the potential impacts on the transportation infrastructure associated with the associated with the Proposed Residential development to be located at 159 Beach Road in Salisbury (hereafter referred to as the "Project"). The following specific areas have been evaluated as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; under existing and future conditions, both with and without the Project. Based on this assessment, we have concluded the following with respect to the Project:

- 1. The Project is expected to generate 164 new vehicle trips on an average weekday (two-way, 24-hour volume), with 10 new vehicle trips (2 entering and 8 exiting) expected during the weekday morning peak hour and 13 new vehicle trips (8 entering and 5 exiting) expected during the weekday evening peak hour.
- 2. Project-related traffic-volume increases external to the study area relative to 2029 No-Build conditions are anticipated to be approximately 1.6 percent during the peak periods;
- 3. The Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated Future conditions without the Project (No-Build conditions);
- 4. All movements exiting the Project site driveway onto Beach Road are predicted to operate at LOS B or better during the weekday morning and evening peak hour; and
- 5. No apparent safety deficiencies were noted with respect to the motor vehicle crash history at the study intersection, which was found to have a motor vehicle crash rate <u>below</u> both the MassDOT statewide and District 4 average crash rate.

Based on the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with implementation of the recommendations that follow.

RECOMMENDATIONS

Project Access

Access to the Project site will be provided by way of 14 individual access driveways including 5 individual driveways to Beach Road and 8 individual driveways to Old County Road. The following recommendations are offered to improve overall operation of the Project driveway:

Signs and landscaping to be installed as a part of the Project within the intersection sight triangle area of the Project site driveway should be designed and maintained so as not to restrict lines of sight; and

Off-Site Improvements

Beach Road at Old County Road Realignment Improvement

This intersection features a skewed geometric layout. In order to improve the overall pedestrian safety and operation of the intersection, the project proponent has proposed to improve this intersection to geometrically narrow the Old County Road leg approach. This provides for a shorter crosswalk and safer pedestrian crossing.

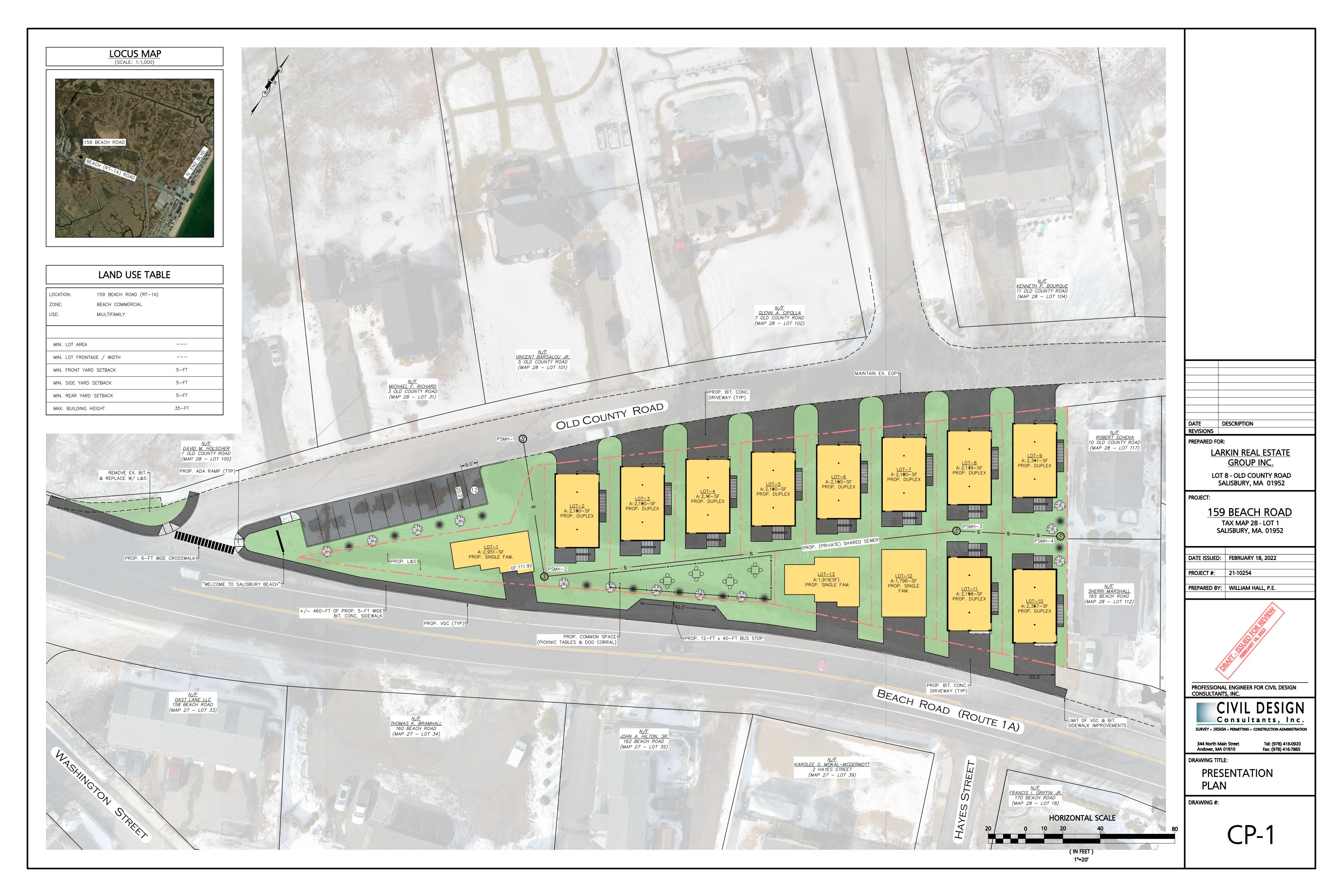
CONCLUSIONS

The proposed Project will not have a significant impact on overall traffic operations. With the implementation of the above recommendations, safe and efficient access will be provided to the planned Project, and the proposed Project can be constructed with minimal impact to the area as designed.

If you should have any questions on the information contained in this memo, feel free to contact us at sthornton@rdva.com or jconners@rdva.com.

cc: File

Enclosure: Technical Appendix


APPENDIX

SITE PLAN
TURNING MOVEMENT COUNTS
TRAFFIC ADJUSTMENTS
PUBLIC TRANSPORTATION SCHEDULES
SPEED STUDY
MOTOR VEHICLE CRASH DATA
GROWTH RATE CALCULATIONS
BACKGROUND DEVELOPMET
TRIP DISTRIBUTION
TRIP GENERATION
CAPACITY ANALYSIS

SITE PLAN

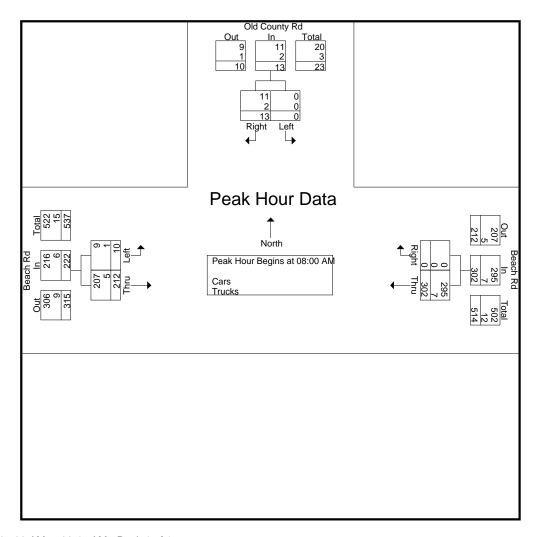
TURNING MOVEMENT COUNTS

N/S Street : Old County Road E/W Street : Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code: 93980001 Start Date: 6/16/2022

Page No : 1

Groups Printed- Cars - Trucks


	Old County	Rd	Beac	h Rd	Beac	h Rd	
	From Nor	th	From	East	From	West	
Start Time	Left	Right	Thru	Right	Left	Thru	Int. Total
07:00 AM	0	6	79	0	0	25	110
07:15 AM	0	0	76	0	1	41	118
07:30 AM	0	3	77	0	1	30	111
07:45 AM	0	3	70	1	3	36	113
Total	0	12	302	1	5	132	452
08:00 AM	0	2	79	0	5	52	138
08:15 AM	0	3	67	0	2	56	128
08:30 AM	0	5	71	0	1	48	125
08:45 AM	0	3	85	0	2	56	146
Total	0	13	302	0	10	212	537
Grand Total	0	25	604	1	15	344	989
Apprch %	0	100	99.8	0.2	4.2	95.8	
Total %	0	2.5	61.1	0.1	1.5	34.8	
Cars	0	23	592	1	13	335	964
% Cars	0	92	98	100	86.7	97.4	97.5
Trucks	0	2	12	0	2	9	25
% Trucks	0	8	2	0	13.3	2.6	2.5

			Old County F	₹d		Beach Rd			Beach Rd		
			From North	1		From East			From West		
	Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak H	eak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1										
Peak H	lour for Entire Inter	section Begi	ns at 08:00 A	.M							
	08:00 AM	0	2	2	79	0	79	5	52	57	138
	08:15 AM	0	3	3	67	0	67	2	56	58	128
	08:30 AM	0	5	5	71	0	71	1	48	49	125
	08:45 AM	0	3	3	85	0	85	2	56	58	146
	Total Volume	0	13	13	302	0	302	10	212	222	537
	% App. Total	0	100		100	0		4.5	95.5		
	PHF	.000	.650	.650	.888	.000	.888	.500	.946	.957	.920
	Cars	0	11	11	295	0	295	9	207	216	522
	% Cars	0	84.6	84.6	97.7	0	97.7	90.0	97.6	97.3	97.2
	Trucks	0	2	2	7	0	7	1	5	6	15
	% Trucks	0	15.4	15.4	2.3	0	2.3	10.0	2.4	2.7	2.8

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code: 93980001 Start Date : 6/16/2022

Page No : 2

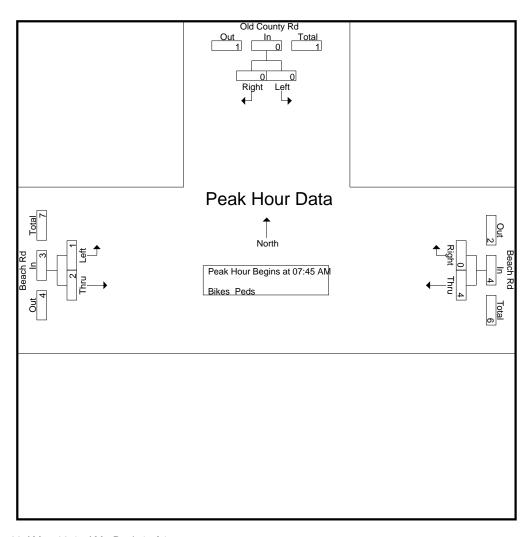
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

Peak Hour for Each Appr	oach Begins a	ıt:							
	07:45 AM			07:00 AM			08:00 AM		
+0 mins.	0	3	3	79	0	79	5	52	57
+15 mins.	0	2	2	76	0	76	2	56	58
+30 mins.	0	3	3	77	0	77	1	48	49
+45 mins.	0	5	5	70	1	71	2	56	58
Total Volume	0	13	13	302	1	303	10	212	222
% App. Total	0	100		99.7	0.3		4.5	95.5	
PHF	.000	.650	.650	.956	.250	.959	.500	.946	.957
Cars	0	11	11	297	1	298	9	207	216
% Cars	0	84.6	84.6	98.3	100	98.3	90	97.6	97.3
Trucks	0	2	2	5	0	5	1	5	6
% Trucks	0	15.4	15.4	1.7	0	1.7	10	2.4	2.7

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code : 93980001 Start Date : 6/16/2022 Page No : 10

Grou	ps	Pri	nted-	Bikes	s Peas	


	Old	County Rd		Beach Rd			В	Beach Rd				
	Fr	om North		Fr	om East		Fr	om West				
Start Time	Left	Right	Peds	Thru	Right	Peds	Left	Thru	Peds	Exclu. Total	Inclu. Total	Int. Total
07:00 AM	0	0	0	0	0	0	0	0	0	0	0	0
07:15 AM	0	0	0	0	0	0	0	1	0	0	1	1
07:30 AM	0	0	0	0	0	0	0	0	0	0	0	0
07:45 AM	0	0	0	1_	0	0	1_	0	0	0	2	2
Total	0	0	0	1	0	0	1	1	0	0	3	3
1			i									
08:00 AM	0	0	0	0	0	0	0	1	0	0	1	1
08:15 AM	0	0	0	1	0	0	0	1	0	0	2	2
08:30 AM	0	0	1	2	0	0	0	0	2	3	2	5
08:45 AM	0	0	0	0	0	0	0	1	0	0	1	1_
Total	0	0	1	3	0	0	0	3	2	3	6	9
Grand Total	0	0	1	4	0	0	1	4	2	3	9	12
Apprch %	0	0		100	0		20	80				
Total %	0	0		44.4	0		11.1	44.4		25	75	

		old County Ro From North	d .		Beach Rd Beach Rd From East From West					
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour Analysis From	07:00 AM to 0	8:45 AM - Pe	eak 1 of 1							
Peak Hour for Entire Inter	section Begins	at 07:45 AM								
07:45 AM	0	0	0	1	0	1	1	0	1	2
08:00 AM	0	0	0	0	0	0	0	1	1	1
08:15 AM	0	0	0	1	0	1	0	1	1	2
08:30 AM	0	0	0	2	0	2	0	0	0	2
Total Volume	0	0	0	4	0	4	1	2	3	7
% App. Total	0	0		100	0		33.3	66.7		
PHF	.000	.000	.000	.500	.000	.500	.250	.500	.750	.875

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code: 93980001 Start Date : 6/16/2022

Page No : 11

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

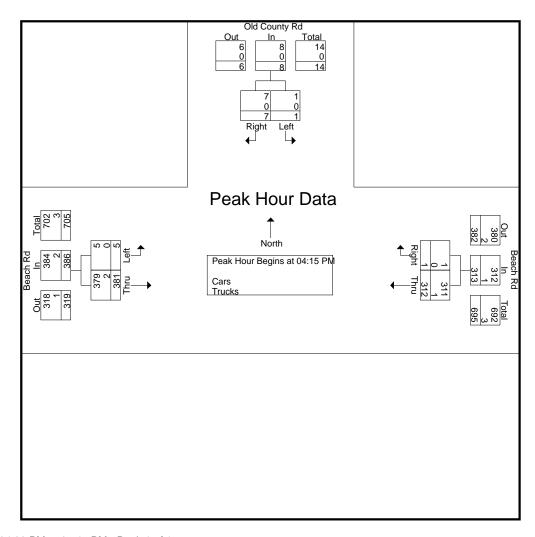
Peak Hour for Each Appr	oach begins a	ll.								
	07:00 AM			07:45 AM			07:15 AM			
+0 mins.	0	0	0	1	0	1	0	1	1	
+15 mins.	0	0	0	0	0	0	0	0	0	
+30 mins.	0	0	0	1	0	1	1	0	1	
+45 mins.	0	0	0	2	0	2	0	1	1	
Total Volume	0	0	0	4	0	4	1	2	3	
% App. Total	0	0		100	0		33.3	66.7		
PHF	.000	.000	.000	.500	.000	.500	.250	.500	.750	

N/S Street : Old County Road E/W Street : Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code: 93980001 Start Date: 6/16/2022

Page No : 1

Groups Printed- Cars - Trucks


	d	Beach Ro		Beach Ro	₹d	Old County	
	st	From Wes		From East	n	From Nor	
Int. Total	Thru	Left	Right	Thru	Right	Left	Start Time
170	91	1	0	74	4	0	04:00 PM
167	87	2	0	75	2	1	04:15 PM
189	101	0	0	87	1	0	04:30 PM
173	95	2	1	73	2	0	04:45 PM
699	374	5	1	309	9	1	Total
178	98	1	0	77	2	0	05:00 PM
160	99	3	0	58	0	0	05:15 PM
146	77	5	0	64	0	0	05:30 PM
164	102	1	0	60	1	0	05:45 PM
648	376	10	0	259	3	0	Total
1347	750	15	1	568	12	1	Grand Total
	98	2	0.2	99.8	92.3	7.7	Apprch %
	55.7	1.1	0.1	42.2	0.9	0.1	Total %
1341	746	15	1	566	12	1	Cars
99.6	99.5	100	100	99.6	100	100	% Cars
6	4	0	0	2	0	0	Trucks
0.4	0.5	0	0	0.4	0	0	% Trucks

			Old County R	d		Beach Rd					
			From North			From East			From West		
	Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
F	Peak Hour Analysis From	04:00 PM to	05:45 PM - P	eak 1 of 1							
F	Peak Hour for Entire Inter	section Begin	ns at 04:15 PN	Л							
	04:15 PM	1	2	3	75	0	75	2	87	89	167
	04:30 PM	0	1	1	87	0	87	0	101	101	189
	04:45 PM	0	2	2	73	1	74	2	95	97	173
	05:00 PM	0	2	2	77	0	77	1	98	99	178_
	Total Volume	1	7	8	312	1	313	5	381	386	707
_	% App. Total	12.5	87.5		99.7	0.3		1.3	98.7		
	PHF	.250	.875	.667	.897	.250	.899	.625	.943	.955	.935
	Cars	1	7	8	311	1	312	5	379	384	704
	% Cars	100	100	100	99.7	100	99.7	100	99.5	99.5	99.6
	Trucks	0	0	0	1	0	1	0	2	2	3
	% Trucks	0	0	0	0.3	0	0.3	0	0.5	0.5	0.4

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code: 93980001 Start Date : 6/16/2022

Page No : 2

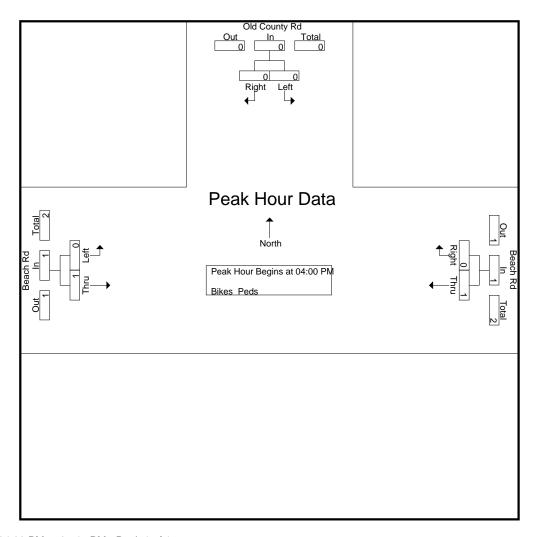
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Each Appr	oach Begins a	t:							
	04:00 PM			04:15 PM			04:30 PM		
+0 mins.	0	4	4	75	0	75	0	101	101
+15 mins.	1	2	3	87	0	87	2	95	97
+30 mins.	0	1	1	73	1	74	1	98	99
+45 mins.	0	2	2	77	0	77	3	99	102
Total Volume	1	9	10	312	1	313	6	393	399
% App. Total	10	90		99.7	0.3		1.5	98.5	
PHF	.250	.563	.625	.897	.250	.899	.500	.973	.978
Cars	1	9	10	311	1	312	6	391	397
% Cars	100	100	100	99.7	100	99.7	100	99.5	99.5
Trucks	0	0	0	1	0	1	0	2	2
% Trucks	0	0	0	0.3	0	0.3	0	0.5	0.5

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

File Name: 93980001 Site Code : 93980001 Start Date : 6/16/2022

Page No : 10

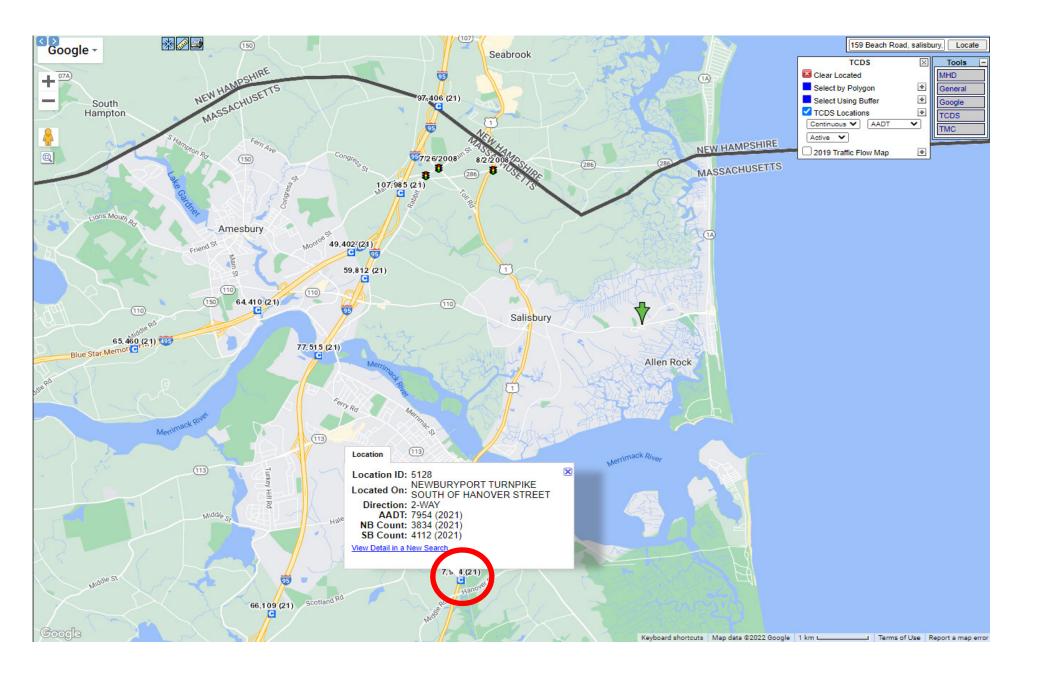

					Groups Pri	nted- Bikes	s Peds					
	Old	County Rd	d	E	Beach Rd			Beach Rd				
	Fr	om North		F	rom East		F	rom West				
Start Time	Left	Right	Peds	Thru	Right	Peds	Left	Thru	Peds	Exclu. Total	Inclu. Total	Int. Total
04:00 PM	0	0	0	1	0	0	0	0	0	0	1	1
04:15 PM	0	0	0	0	0	0	0	0	1	1	0	1
04:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	11	0	0	11	1_
Total	0	0	0	1	0	0	0	1	1	1	2	3
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:15 PM	0	0	2	0	0	0	0	0	0	2	0	2
05:30 PM	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0_
Total	0	0	2	0	0	0	0	0	0	2	0	2
Grand Total	0	0	2	1	0	0	0	1	1	3	2	5
Apprch %	0	0		100	0		0	100				
Total %	0	0		50	0		0	50		60	40	

		old County Ro From North	I		Beach Rd From East					
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour Analysis From	04:00 PM to 0	5:45 PM - Pe	eak 1 of 1							
Peak Hour for Entire Inter	section Begins	at 04:00 PM								
04:00 PM	0	0	0	1	0	1	0	0	0	1
04:15 PM	0	0	0	0	0	0	0	0	0	0
04:30 PM	0	0	0	0	0	0	0	0	0	0
04:45 PM	0	0	0	0	0	0	0	1	1	1
Total Volume	0	0	0	1	0	1	0	1	1	2
% App. Total	0	0		100	0		0	100		
PHF	.000	.000	.000	.250	.000	.250	.000	.250	.250	.500

N/S Street: Old County Road E/W Street: Beach Road City/State : Salisbury, MA Weather : Cloudy

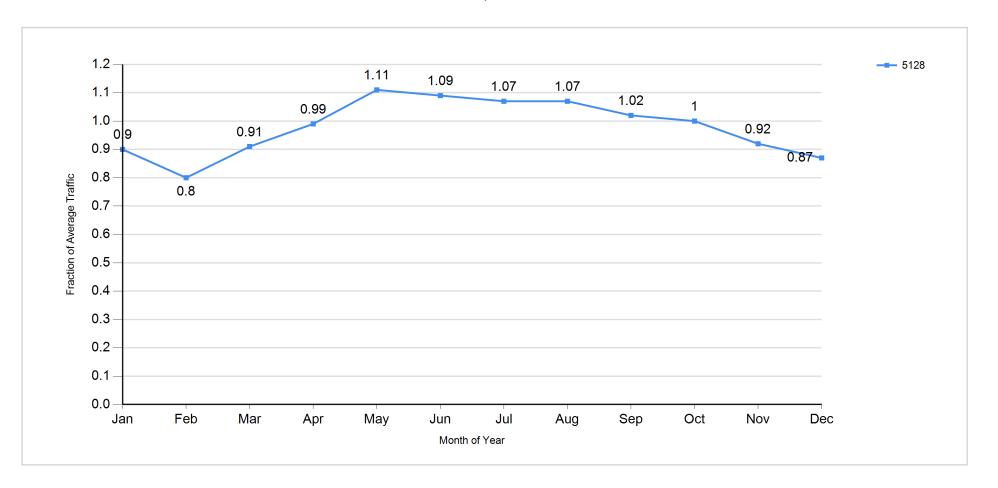
File Name: 93980001 Site Code: 93980001 Start Date : 6/16/2022

Page No : 11



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

Peak Hour for Each Approach Begins at:										
	04:00 PM			04:00 PM			04:00 PM			
+0 mins.	0	0	0	1	0	1	0	0	0	
+15 mins.	0	0	0	0	0	0	0	0	0	
+30 mins.	0	0	0	0	0	0	0	0	0	
+45 mins.	0	0	0	0	0	0	0	1	1	
Total Volume	0	0	0	1	0	1	0	1	1	
% App. Total	0	0		100	0		0	100		
PHF	.000	.000	.000	.250	.000	.250	.000	.250	.250	


TRAFFIC ADJUSTMENTS

massDOT

Traffic Pattern by Month for 1/1/2019 - 12/31/2019 Criteria: Location ID = 5128, From 1/1/1900 To 12/31/2049 12:00:00 AM

Massachusetts Highway Department 5128: Monthly Hourly Volume for June 2019

ocation ID:5128Seasonal Factor Group:U3County:EssexDaily Factor Group:

ctional Class 3 Axle Factor Group: U3

Location: NEWBURYPORT TURNPIKE Growth Factor Group:

Location		IVL	.wbor	IFORI	IONNE	IKL					GIOWIII	ractor	Group.												
	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	TOTAL
1 2	33	22	18	11	9	73	185	342	469	618	736	820	881	871	808	774	758	574	501	367	253	191	145	122	9581
3	66 11	24	13 7	6 8	18 29	39 129	112 446	182 791	311	382 558	581 538	649	717 637	694	731 762	706 841	634 777	562 839	445 509	230 422	178 285	123 144	66 63	43	7512 9889
4	11	8	,	ŏ	29	129	446	791	723	558	538	609	637	700	762	841	///	839	509	422	285	144	03	53	9889
5	28	14	12	8	46	132	417	788	760	562	628	677	700	727	830	833	871	908	572	403	268	171	86	55	10496
6	32	12	7	10	27	132	396	757	772	584	585	652	693	708	787	884	819	888	537	442	305	172	108	85	10394
7	35	14	6	9	35	128	381	778	688	630	664	754	793	774	866	953	905	923	616	514	389	269	195	125	11444
8	61	33	17	13	10	70	202	349	485	688	831	800	857	996	819	777	716	704	618	421	383	281	198	119	10448
9	81	41	27	22	53	66	111	218	357	496	611	741	760	881	729	715	687	606	514	426	242	165	98	65	8712
10	21	18	7	10	34	141	394	729	763	581	584	628	660	680	718	866	784	827	516	363	247	164	93	45	9873
11	23	11	13	10	24	121	351	734	731	602	597	584	688	686	746	859	875	915	599	438	333	248	114	52	10354
12	37	9	10	11	31	131	439	761	700	615	638	649	712	747	781	906	965	901	602	492	288	181	109	77	10792
13	39	15	10	6	33	135	377	748	693	544	613	695	667	696	719	774	750	783	542	358	298	164	83	59	9801
14	29	11	10	7	38	138	375	716	669	612	701	768	773	756	782	877	917	843	631	531	372	266	201	110	11133
15	59	31	17	17	16	82	192	335	446	599	773	828	798	773	783	763	703	680	601	472	396	333	191	108	9996
16	63	35	18	9	8	51	89	166	293	458	550	740	641	614	665	534	505	497	333	297	172	107	78	35	6958
17	16	7	13	7	30	113	363	604	681	573	546	646	702	653	743	799	855	833	561	413	314	189	111	55	9827
18	28	15	15	7	36	134	391	688	732	597	603	663	688	670	693	757	803	808	515	371	246	160	102	60	9782
19	35	14	10	11	46	120	375	608	699	613	571	615	659	664	730	785	855	895	580	373	340	191	127	56	9972
20	35	17	6	11	42	139	397	597	634	596	601	644	626	706	683	666	734	798	490	322	254	179	97	76	9350
21	33	6	7	15	32	113	350	534	601	545	642	637	752	723	709	719	805	726	509	387	262	223	145	107	9582
22 23	66	25	14	13	18	78	158	267	415	577	701	789	759	751	699	679	674	608	522	425	303	270	186	105	9102
24	52	36	15	14	20	62	124	230	361	475	689	663	731	782	752	706	722	681	536	404	339	235	126	74	8829
25	20	11	11	16	29	107	393	562	666	605	606	686	654	657	695	762	854	883	543	374	303	181	93	51	9762 9397
26	32 21	8 12	14 12	11 10	38 36	122 108	344 377	608 606	743 725	636 571	627 571	686 676	687 656	657 701	681 759	670 782	719	817 872	472 601	321 430	218 355	154 228	92 152	40 65	10181
27	30	8	5	13	39	128	364	622	759	603	613	657	719	701	739	831	855 889	881	650	496	356	247	149	70	10181
28	42	7	6	14	49	109	373	583	679	665	655	730	738	786	786	856	822	813	578	515	344	263	217	122	10752
29	75	33	10	14	18	83	172	246	344	522	635	680	707	723	666	658	551	514	448	357	314	248	201	98	8317
30	77	27	8	11	11	47	103	191	304	422	555	608	588	697	595	510	557	382	413	289	219	151	93	43	6901
Average	41	18	12	11	29	105	302	529	593	570	629	689	712	730	740	767	771	757	536	402	296	203	128	75	9645

Massachusetts Highway Department 5128: Monthly Hourly Volume for June 2022

Location ID: County: Functional Class Location:		NE	EWBURY	5128 Essex 3 YPORT	TURNP	IKE					Daily Axle F	al Factor Factor G Factor G r Factor	Froup:			U3									
	0:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	TOTAL
1	19	7	9	7	19	99	292	679	681	545	584	592	609	670	770	748	751	703	485	283	242	158	81	37	9070
2	15	5	5	12	26	108	310	700	759	600	597	587	654	663	780	908	880	852	505	377	279	183	92	67	9964
3	18	17	12	12	20	85	275	611	666	530	576	606	634	685	744	813	781	684	471	325	272	153	97	66	9153
4	33	25	8	6	20	57	120	301	409	581	722	666	826	830	713	695	639	612	498	408	298	261	133	86	8947
5	44	20	11	7	25	66	90	161	297	501	603	639	729	729	756	711	570	523	486	349	267	129	64	41	7818
6	14	7	6	9	26	102	314	630	630	485	540	568	622	653	676	787	760	757	463	338	239	143	90	44	8903
7	12	5	3	9	20	114	337	733	742	553	607	581	678	679	820	892	822	821	483	369	274	167	86	46	9853
8	18	7	10	8	19	90	286	645	671	503	510	559	606	628	666	779	758	750	498	410	277	174	66	61	8999
9	28	11	11	8	18	107	280	627	642	505	500	521	614	655	717	762	718	743	529	421	291	179	107	56	9050
10	26	14	6	10	20	109	296	607	723	614	629	702	674	792	761	877	843	805	619	486	396	249	149	83	10490
11	54	31	12	8	20	47	134	251	376	515	610	738	713	729	701	675	662	589	460	401	327	249	178	97	8577
12	58	35	11	11	22	52	109	188	320	441	623	686	693	720	651	660	572	503	405	330	260	161	76	26	7613
13	19	9	5	12	23	93	286	650	641	518	545	614	587	662	656	785	784	769	468	319	257	133	48	35	8918
14	21	14	3	20	26	113	318	699	739	600	615	668	637	719	797	882	879	822	535	390	317	166	96	46	10122
15	18	11	14	10	30	103	330	674	664	552	591	593	658	666	720	807	863	904	551	364	327	170	88	33	9741
16	26	11	11	11	26	104	293	647	679	565	633	665	714	667	748	781	834	792	508	363	303	170	80	51	9682
17	18	11	10	14	25	97	287	564	642	552	645	761	747	684	729	795	764	712	572	383	313	301	183	103	9912
18	42	28	12	12	14	58	139	247	395	604	613	824	742	748	795	716	584	634	406	325	268	203	158	88	8655
19	42	17	12	6	6	42	62	114	221	343	432	529	587	582	539	556	535	406	360	309	215	127	69	36	6147
20	22	9	6	6	27	87	247	416	447	554	567	640	714	639	753	725	773	678	486	353	306	161	71	44	8731
21	29	9	8	15	28	120	302	556	664	557	585	608	652	667	708	775	851	769	537	387	328	190	90	51	9486
22	24	12	8	12	27	100	295	510	581	527	582	608	713	631	704	748	782	691	506	348	251	192	88	45	8985
23	22	9	7	16	25	105	291	532	624	551	599	640	683	687	684	777	788	757	493	384	308	219	124	48	9373
24	24	8	9	8	28	105	245	466	578	594	591	679	669	735	641	797	780	677	517	381	335	277	157	92	9393
25	43	24	13	10	18	59	125	269	393	521	632	753	684	678	650	632	582	590	508	404	347	278	179	107	8499
26	64	27	13	7	24	42	99	165	279	459	550	583	641	642	568	567	545	539	462	408	310	190	94	45	7323
27	16	11	7	7	25	107	260	481	568	538	512	558	512	542	558	569	643	664	413	252	193	121	73	38	7668
28	15	4	6	5	25	94	318	513	669	615	599	621	680	673	724	721	795	781	540	377	312	194	78	50	9409
29	14	6	9	14	33	109	319	499	651	621	591	598	687	665	682	752	842	728	553	396	297	229	121	45	9461
30																									
Average	28	14	9	10	23	89	243	487	564	539	586	634	668	680	704	748	737	698	494	367	290	191	104	57	8964

Traffic Study Stations - Month

	Sta 5128 2019 -2022																								
	12:00 AM	:00 AM	::00 AM	:00 AM	4:00 AM	5:00 AM	6:00 AM	:00 AM	8:00 AM	9:00 AM	0:00 AM	1:00 AM	2:00 PM	:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	1:00 PM	aily
2019June ADT	41	18	ณ 12	11	29	105	302	≻ 529	593	570	- 629	- 689	712	- 730	740	767	771	757	536	402	296	203	128	- 75	8829
2022 JuneADT	28	14	9	10	23	89	243	487	564	539	586	634	668	680	704	748	737	698	494	367	290	191	104	57	7323
VID March Adjustment	1.48	1.30	1.32	1.11	1.29	1.18	1.24	1.09	1.05	1.06	1.07	1.09	1.07	1.07	1.05	1.03	1.05	1.08	1.09	1.10	1.02	1.07	1.23	1.30	1.21

1.07

PUBLIC TRANSPORTATION SCHEDULES

10

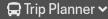
Amesbury/Newburyport/Salisbury

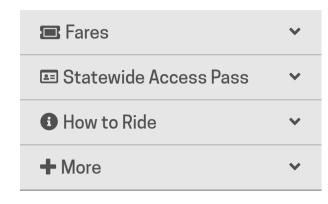
Effective: Sunday, September 6, 2020

OUTBOUND

WEEKDAYS

			1	2	3	4	5	6	7	8	9	10	11
			Bus starts	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus ends
			at Nicholas Costello Transit Ctr.	from Stop & Shop	from Port Plaza	from Market Basket	from Anna Jacques	from Commuter Rail	from Heritage House		from James Steam Mill	from State Street	at Salisbury Beach
			5:45	5:50	6:00	6:05	6:15	6:25	6:30	6:35	-	6:40	6:55
	AM		6:45	6:50	7:00	7:05	7:15	7:25	7:30	7:35	-	7:40	7:55
			7:45	7:50	8:00	8:05	8:15	8:25	8:30	8:35	-	8:40	8:55
			8:45	8:50	9:00	9:05	9:15	9:25	9:30	9:35	-	9:40	9:55
			9:45	9:50	10:00	10:05	10:15	10:25	10:30	10:35	-	10:40	10:55
			10:45	10:50	11:00	11:05	11:15	11:25	11:30	11:35	-	11:40	11:55
			11:45	11:50	12:00	12:05	12:15	12:25	12:30	12:35	-	12:40	12:55
			12:45	12:50	1:00	1:05	1:15	1:25	1:30	1:35	-	1:40	1:55
			1:45	1:50	2:00	2:05	2:15	2:25	2:30	2:35	-	2:40	2:55
			2:45	2:50	3:00	3:05	3:15	3:25	3:30	3:35		3:40	3:55
	PM		3:45	3:50	4:00	4:05	4:15	4:25	4:30	4:35		4:40	4:55
			4:45	4:50	5:00	5:05	5:15	5:25	5:30	5:35	.	5:40	5:55
			5:45	5:50	6:00	6:05	6:15	6:25	6:30	6:35		6:40	6:55
			6:45	6:50	7:00	7:05	7:15	7:25	7:30	7:35		7:40	
						SATURDA	AY / SUND	PAY					
			8:48	8:51	8:59	9:04	9:11	9:17	9:20	9:25	-	9:30	9:45
	AM		9:58	10:01	10:09	10:14	10:21	10:27	10:30	10:35		10:40	10:55
			11:08	11:11	11:19	11:24	11:31	11:37	11:40	11:45	-	11:50	12:05
			12:18	12:21	12:29	12:34	12:41	12:47	12:50	12:55	12:57	1:00	1:15
			1:28	1:31	1:39	1:44	1:51	1:57	2:00	2:05	-	2:10	2:25
	PM		2:38	2:41	2:49	2:54	3:01	3:07	3:10	3:15		3:20	3:35
			3:48	3:51	3:59	4:04	4:11	4:17	4:20	4:25	4:27	4:30	4:45
			4:58	5:01	5:09	5:14	5:21	5:27	5:30	5:35	.	5:40	5:55
			6:08	6:11	6:19	6:24	6:31	6:37	6:40	6:45	-	6:50	7:05
							NBOUND						
						WE	EKDAYS						
	11	12	13	14	15	16	17	18	19	20	21	22	
	Bus starts	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus leaves	Bus ends	
	at Salisbury Beach	from Salisbury Center		from James Steam Mill	from State Street	from Heritage House	from Commuter Rail		from Market Basket	from Port Plaza	from Stop & Shop	at Nicholas Costello Transit Ctr.	Bus continues on as Route
	-	-	-	-	5:00	-	5:06	-	5:12	5:15	5:25	5:30	51
	6:00	6:10	6:20		6:25	6:35	6:40	6:45	6:55	7:00	7:10	7:15	51
	7:00	7:10	7:20		7:25	7:35	7:40	7:45	7:55	8:00	8:10	8:15	51
AM	8:00	8:10	8:20	-	8:25	8:35	8:40	8:45	8:55	9:00	9:10	9:15	51
	9:00	9:10	9:20		9:25	9:35	9:40	9:45	9:55	10:00	10:10	10:15	51
	10:00	10:10	10:20		10:25	10:35	10:40	10:45	10:55	11:00	11:10	11:15	51
	11:00	11:10	11:20	-	11:25	11:35	11:40	11:45	11:55	12:00	12:10	12:15	51
	12:00	12:10	12:20	.	12:25	12:35	12:40	12:45	12:55	1:00	1:10	1:15	51
	1:00	1:10	1:20	.	1:25	1:35	1:40	1:45	1:55	2:00	2:10	2:15	51
	2:00	2:10	2:20		2:25	2:35	2:40	2:45	2:55	3:00	3:10	3:15	51
PM	3:00	3:10	3:20	-	3:25	3:35	3:40	3:45	3:55	4:00	4:10	4:15	51
	4:00	4:10	4:20		4:25	4:35	4:40	4:45	4:55	5:00	5:10	5:15	51
	5:00	5:10	5:20	.	5:25	5:35	5:40	5:45	5:55	6:00	6:10	6:15	51
	6:00	6:10	6:20	·····-	6:25	6:35	6:40	6:45	6:55	7:00	7:10	7:15	51
	7:00	7:10	7:20	.	7:25	-	.	.	-	.	-		
					SA	TURDAY/	SUNDAY						
	7:34	7:40	7:47	-	7:50		8:03	8:09	8:16	8:25	8:30	8:32	51
	8:44	8:50	8:57		9:00	9:10	9:13	9:19	9:26	9:35	9:40	9:42	51
	9:54	10:00	10:07	10:09	10:10	10:20	10:23	10:29	10:36	10:45	10:50	10:52	51
		10:00 11:10	10:07 11:17	10:09 -	10:10 11:20	10:20 11:30			10:36 11:46	10:45 11:55	10:50 12:00	10:52 12:02	51 51




♣ Arrivals

Map ∨

Search...

WE ARE GOING FARE FREE ON MARCH 1, 2022

The Merrimack Valley Regional Transit Authority (MVRTA) board voted unanimously to go fare-free for all local fixed routes and EZ Trans paratransit services starting March 1, 2022 for at least 2 years. Fares will still be collected on the Boston Commuter bus.

« Cancelation - Monday, December 6, 2021

Cancelations - Friday, January 07, 2022 »

Contact Us

MVRTA Administrative Offices

- Monday Friday 8:00AM - 5:00PM
- 85 Railroad Avenue Haverhill, MA 01835
- **(978)** 469-6878
- **(978)** 521-5956
- <u>marketing@mvrta.com</u>

Administration

Advisory Board Meeting <u>Careers</u> **Contact Us** Open Government Title VI Policy

Follow Us

- Like us on Facebook
- **▼** Follow @MVRTA on Twitter

About **MRIA**

The MVRTA serves the northeast corner of Massachusetts with over 1 million miles of scheduled bus routes, and elderly and disabled transportation.

Read more about MVRTA

Copyright © 2022 MVRTA | Site Credits

SPEED STUDY

Job Location Calculated By: Checked By: Salisbury, MA
At Site Drive
S.R.F.

Job # Date 9398 6/23/2022

Street: Beach Street
Direction: Westbound

Speed Limit: Time of Day Observations 35 10:00 a.m. 20

Speed	# of Observation	CUM. # Of OBS	% OF TOTAL OBS	CUM %
55				
54				
53				
52				
51				
50				
49	11	1	5	100
48	0	1	0	95
47	0	1	0	95
46	0	1	0	95
45	0	1	0	95
44	1	2	5	95
43	0	2	0	90
42	1	3	5	90
41	0	3	0	85
40	1	4	5	85
39	3	7	15	80
38	4	11	20	65
37	3	14	15	45
36	0	14	0	30
35	2	16	10	30
34	1	17	5	20
33	2	19	10	15
32	0	19	0	5
31	0	19	0	5
30	1	20	5	5
29				
28				
27				
26				
25				
24				
23				
22				
21				
20				

Average:

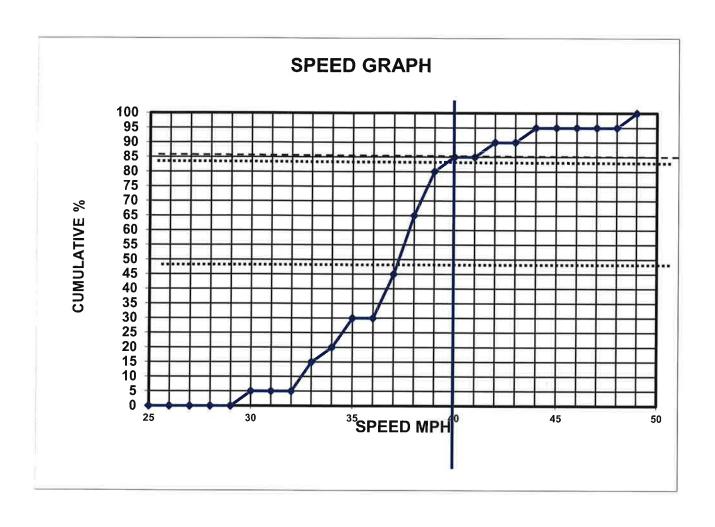
<u>37.75</u>

Comments:

85% = 40.0 m.p.h.

Street:

Beach Street


Direction: Westbound

Job#

9398

Date

te 6/23/2022

Location
Calculated By:
Checked By:

Salisbury, MA
At Site Drive
S.R.F.

Job # 9398 Date 6/23/2022

Street: Beach Street
Direction: Eastbound

Speed Limit: 40
Time of Day 10:00 a.m.
Observations 20

Speed	# of Observation	CUM. # Of OBS	% OF TOTAL OBS	CUM %
55				
54				
53				
52				
51				
50				
49				
48				
47				
46				
45				
44				
43	1	1	5	100
42	2	3	10	95
41	1	4	5	85
40	1	5	5	80
39	2	7	10	75
38	1	8	5	65
37	5	13	25	60
36	2	15	10	35
35	2	17	10	25
34	0	17	0	15
33	1	18	5	15
32	0	18	0	10
31	0	18	0	10
30	2	20	10	10
29				
28				
27				
26				
25				
24				
23				
22				
21				
20				

Average:

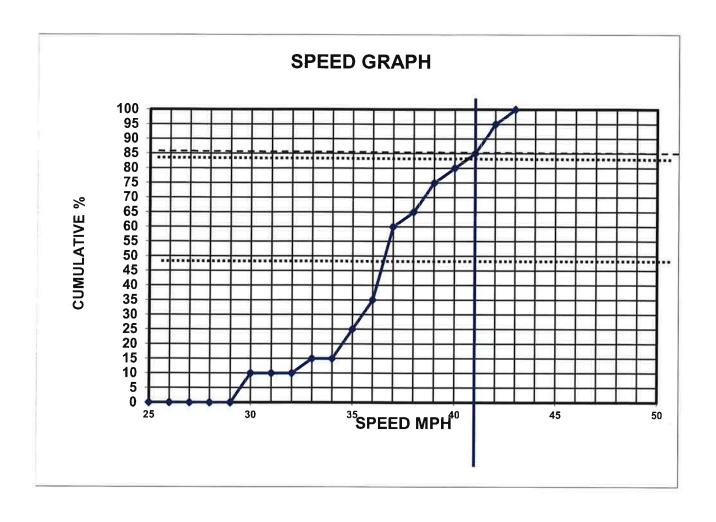
<u>37.2</u>

Comments:

85% = 41.0 m.p.h.

Street:

Beach Street


Direction: Eastbound

Job#

9398

Date

6/23/2022

MOTOR VEHICLE CRASH DATA

CRASH RATE WORKSHEET

CITY/TOWN : SALISE	BURY			COUNT DA	TE:	2022	MHD USE ONLY
DISTRICT: 4	UNSIGN	ALIZED :	х	SIGNA	LIZED :		Source #
		~ IN	TERSECTIO	ON DATA ~			
MAJOR STREET :	Beach Road	d (Route 1A)					ST#
MINOR STREET(S):	Old County	Road					ST#
							ST#
	,						ST#
							ST#
INTERSECTION DIAGRAM (Label Approaches)	North	413	8 2 3		335		INTERSECTION REF#
			Peak Hou	r Volumes	Г	Г	
APPROACH:	1	2	3	4	5	Total Entering	
DIRECTION:		SB	EB	WB		Vehicles	
VOLUMES (PM) :		8	413	335		756	
"K" FACTOR:	0.092	APPROA	CH ADT :	8,217	ADT = TOTAL	VOL/"K" FAC	r.
TOTAL # OF ACCIDENTS :	1	# OF YEARS :	5		GE#OF NTS(A):	0.20	
CRASH RATE CALC	ULATION :	0.07	RATE =	<u>(A * 1,0</u> (ADT	* 365)		
Comments : Accider	nt Rate for Di	strict 4 unsig	gnalized inter	rsections = 0).57		- [

Statewide Accident Rate for Signalized Inteserction = 0.78 and Unsignalized/Inteserction = 0.57 S:\Jobs\9398\5 - Crash\Crash Rates Worksheet

```
Crash Number 4707542
                             City Town Name SALISBURY
                                  Crash Date 04/19/2019
                               Crash Severity
                                 Crash Status Closed
                                  Crash Time 11:31 AM
                                  Crash Year 2019
                Max Injury Severity Reported Possible Injury (C)
                          Number of Vehicles 2
                          Police Agency Type Local police
                                     sptroop
              Age of Driver - Youngest Known 25-34
                Age of Driver - Oldest Known >84
      Age of Non-Motorist - Youngest Known
         Age of Non-Motorist - Oldest Known
                                  Crash Hour 11:00AM to 11:59AM
Driver Contributing Circumstances (All Drivers) D1: (No improper driving) / D2: (No improper driving)
            Driver Distracted By (All Vehicles) D1: Not Distracted
                          First Harmful Event Collision with motor vehicle in traffic
                                 Is Geocoded Yes
                             Light Conditions Daylight
                          Manner of Collision Rear-end
                            MassDOT District 4
            Non-Motorist Action (All Persons)
          Non-Motorist Location (All Persons)
             Non-Motorist Type (All Persons)
                    RMV Document Numbers PW201915400421
                      Road Surface Condition Dry
                      Roadway Junction Type Not at junction
                            RPA Abbreviation MVPC
                              Total Fatalities 0
                      Total Non-Fatal Injuries 0
                   Traffic Control Device Type No controls
                       Trafficway Description Two-way, divided, unprotected median
   Vehicle Actions Prior to Crash (All Vehicles) V1: Travelling straight ahead / V2: Travelling straight ahead
           Vehicle Configuration (All Vehicles) V1:(Unknown vehicle configuration) / V2:(Unknown vehicle configuration)
         Vehicle Emergency Use (All Vehicles) V1:(No) / V2:(No)
     Vehicle Towed From Scene (All Vehicles) V1:(No) / V2:(No)
       Vehicle Travel Directions (All Vehicles) V1: E / V2: E
                         Weather Conditions Clear
                                County Name ESSEX
                             Crash Report IDs 19-64-AC
             FMCSA Reportable (All Vehicles)
                   FMCSA Reportable (Crash)
                 First Harmful Event Location Roadway
                          Geocoding Method At Intersection
                                  Hit and Run No hit and run
                                      Locality
            Most Harmful Event (All Vehicles) V1:(Collision with motor vehicle in traffic) / V2:(Collision with motor vehicle in traffic
             Road Contributing Circumstance None
                          School Bus Related No, school bus not involved
                                  Speed Limit
               Traffic Control Device Function Not reported
     Vehicle Sequence of Events (All Vehicles) V1:(Collision with motor vehicle in traffic) V2:(Collision with motor vehicle in traffic
                          Work Zone Related No
                                           X 254386.8433
```

Street Number Roadway BEACH ROAD / OLD COUNTY ROAD

Y 954574.3751 Latitude 42.83987735 Longitude -70.83474799 GROWTH RATE CALCULATIONS

General Background Traffic Growth - Daily Traffic Volumes

Station Number	ROUTE/STREET	LOCATION	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Average Annual Growth Rate
5108	INTERSTATE 95	SOUTH OF MAIN ST.	99,787	100,000	104,307	100,735	105,993	105,357	107,886	110,583	111,357	112,916	114,158	1.42%
225926	LAFAYETTE ROAD SOUTH OF 1000FT S OF TOLL ROAD	NORTH OF WATER STREET								11,613	11,810	11,845	11,798	0.51%
	LAFAYETTE ROAD NORTH OF INTERSTATE 95 CONNECTOR	NORTH OF WATER STREET								8,361	8,503	8,529	8,495	0.51%
														0.82%

USE:1.0%

TRIP DISTRIBUTION

Table 3. Residence MCD/County to Workplace MCD/County Commuting Flows for the United States and Puerto Rico Sorted by Residence

For more information on sampling and estimation methods, confidentiality protection, and sampling and nonsampling errors, see http://www2.census.gov/programs-surveys/acs Universe: Workers 16 years and over.

Commuting flows are sorted by residence state, residence county, and residence minor civil division.

				Commuting Flow			
State Name	Minor Civil Division Name	State Name	Minor Civil Division Name	Workers in Commuting Flow	%		
Massachusetts	Salisbury town	Massachusetts	Salisbury town	835	19%		
Massachusetts	Salisbury town	Massachusetts	Newburyport city	511	12%		
Massachusetts	Salisbury town	Massachusetts	Amesbury Town city	290	7%		
Massachusetts	Salisbury town	Massachusetts	Boston city	228	5%		
Massachusetts	Salisbury town	Massachusetts	Danvers town	133	3%		
Massachusetts	Salisbury town	Massachusetts	Peabody city	128	3%		
Massachusetts	Salisbury town	Massachusetts	North Andover town	114	3%		
Massachusetts	Salisbury town	New Hampshire	Seabrook town	113	3%		
Massachusetts	Salisbury town	Massachusetts	Lawrence city	105	2%		
Massachusetts	Salisbury town	Massachusetts	Newbury town	105	2%		
Massachusetts	Salisbury town	Massachusetts	Haverhill city	102	2%		
Massachusetts	Salisbury town	Massachusetts	lpswich town	94	2%		
Massachusetts	Salisbury town	New Hampshire	Portsmouth city	90	2%		
Massachusetts	Salisbury town	Massachusetts	Georgetown town	73	2%		
Massachusetts	Salisbury town	Massachusetts	Methuen Town city	67	2%		
Massachusetts	Salisbury town	Massachusetts	Beverly city	65	1%		
Massachusetts	Salisbury town	Massachusetts	Marblehead town	56	1%		
Massachusetts	Salisbury town	Massachusetts	Salem city	56	1%		
Massachusetts	Salisbury town	Massachusetts	Andover town	55	1%		
Massachusetts	Salisbury town	Massachusetts	Chelmsford town	46	1%		
Massachusetts	Salisbury town	Massachusetts	Melrose city	46	1%		
Massachusetts	Salisbury town	Massachusetts	Saugus town	44	1%		
Massachusetts	Salisbury town	Massachusetts	Somerville city	41	1%		
Massachusetts	Salisbury town	New Hampshire	Hampton town	41	1%		
Massachusetts	Salisbury town	Massachusetts	Gloucester city	38	1%		
Massachusetts	Salisbury town	Massachusetts	Middleton town	35	1%		
Massachusetts	Salisbury town	Massachusetts	Lowell city	35	1%		
Massachusetts	Salisbury town	Massachusetts	Newton city	33	1%		
Massachusetts	Salisbury town	Massachusetts	Wevmouth Town city	33	1%		
Massachusetts	Salisbury town	Massachusetts	Wakefield town	32	1%		
Massachusetts	Salisbury town	Massachusetts	Waltham city	29	1%		
Massachusetts	Salisbury town	Massachusetts	Merrimac town	28	1%		
Massachusetts	Salisbury town	Massachusetts	Burlington town	28	1%		
Massachusetts	Salisbury town	New Hampshire	Brentwood town	27	1%		
Massachusetts	Salisbury town	New Hampshire	Dover city	25	1%		
Massachusetts	Salisbury town	Maine	Fairfield town	24	1%		
Massachusetts	Salisbury town	New Hampshire	Exeter town	24	1%		
Massachusetts	Salisbury town	Connecticut	Stamford town	23	1%		
Massachusetts	Salisbury town	Massachusetts	Tewksbury town	23	1%		
Massachusetts	Salisbury town	Massachusetts	Lynn city	22	1%		
Massachusetts	Salisbury town	Massachusetts	Rowley town	22	1%		

	Matrix	
Е	ntering /Ex	it
Beach	Beach	
Road	Road	
(West)	(East)	%
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
0.5	0.5	1.0 1.0
1	0.5	1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1	1	2.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0
1		1.0 1.0
1		1.0
1		1.0
1		1.0
1		1.0
		1.0

	Trips	
	Trips	
	Exit	
Beach	Beach	
Road	Road	T 1
(West) 835	(East) 0	Total 835
511	0	511
	0	290
290 228	0	290
133	0	133
128	0	128
114	0	114
113	0	113
105	0	105
105	0	105
103	0	103
94	0	94
45	45	90
73	0	73
67	0	67
65	0	65
56	0	56
56	0	56
55	0	55
46	0	46
46	0	46
44	0	44
41	0	41
41	41	82
38	0	38
35	0	35
35	0	35
33	0	33
33	0	33
32	0	32
29	0	29
28	0	28
28	0	28
27	0	27
25	0	25
24	0	24
24	0	24
23	0	23
23	0	23
22	0	22
3852	86	3938
98%	2%	
	_	

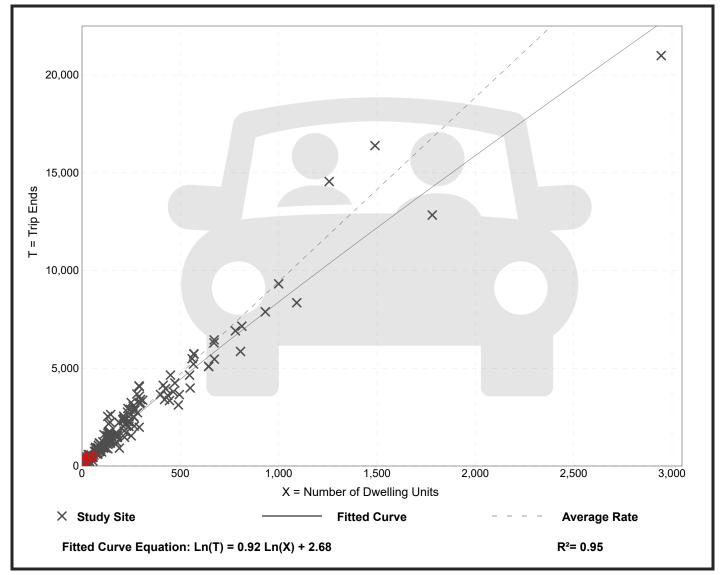
TRIP GENERATION

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 174 Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.43	4.45 - 22.61	2.13

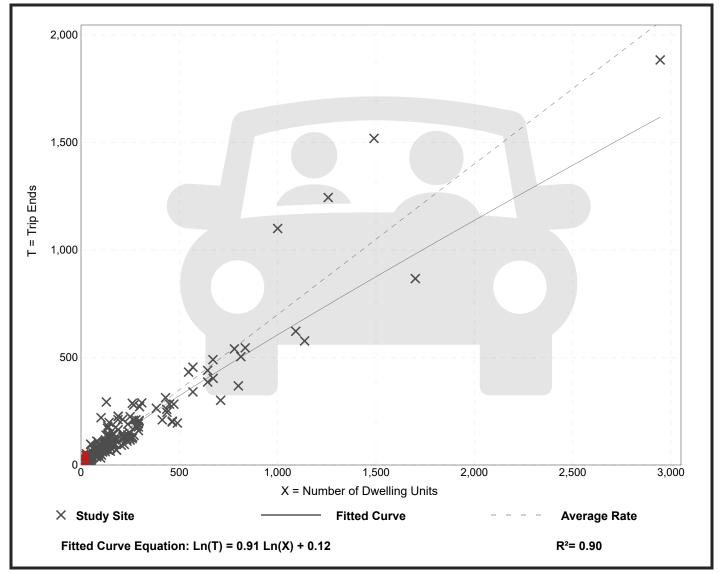
Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 192 Avg. Num. of Dwelling Units: 226

Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	0.27 - 2.27	0.24

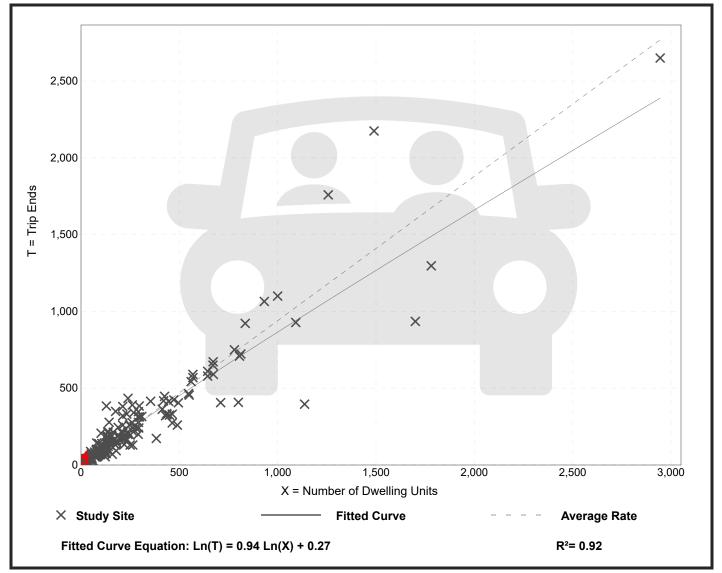
Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 208 Avg. Num. of Dwelling Units: 248

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

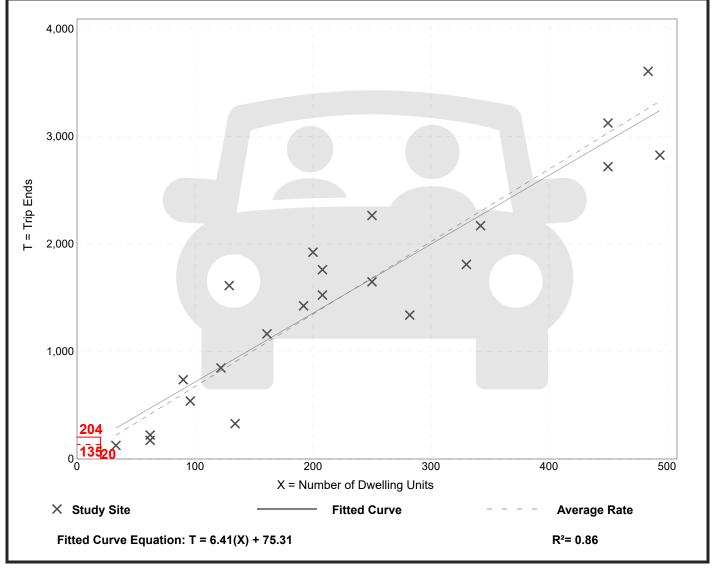
Average Rate	Range of Rates	Standard Deviation
0.94	0.35 - 2.98	0.31

Multifamily Housing (Low-Rise)

Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday


Setting/Location: General Urban/Suburban

Number of Studies: 22 Avg. Num. of Dwelling Units: 229

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
6.74	2.46 - 12.50	1.79

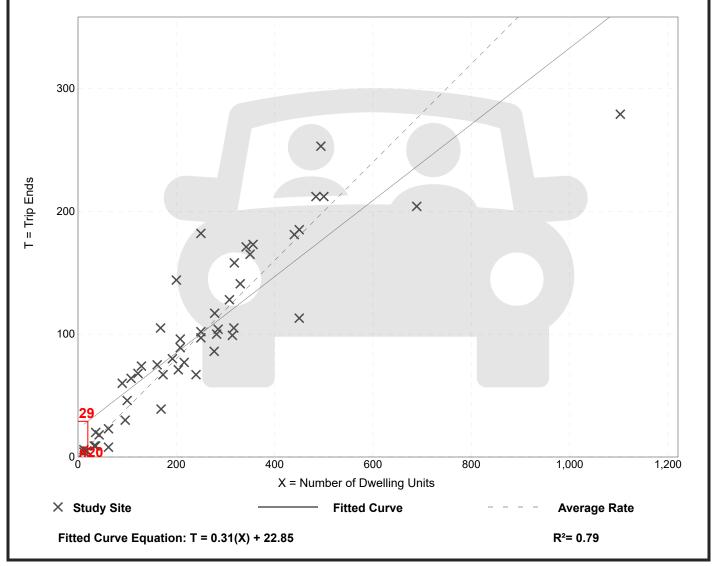
Multifamily Housing (Low-Rise)

Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 49 Avg. Num. of Dwelling Units: 249

Directional Distribution: 24% entering, 76% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.40	0.13 - 0.73	0.12

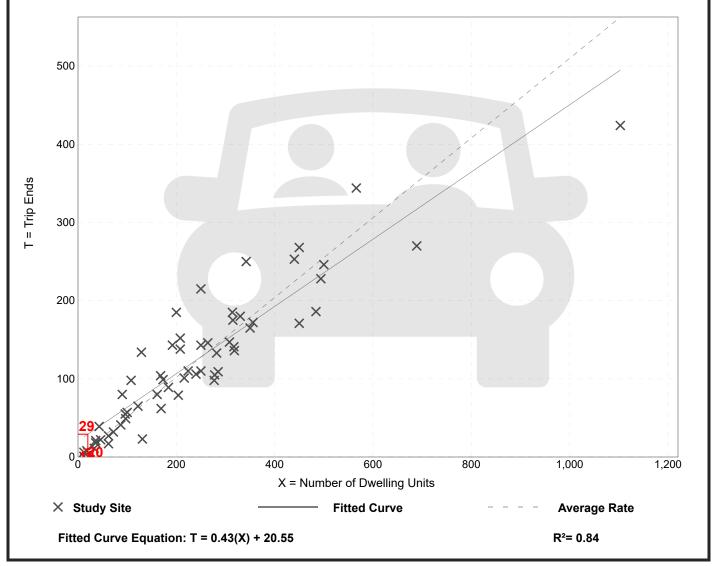
Multifamily Housing (Low-Rise)

Not Close to Rail Transit (220)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 59 Avg. Num. of Dwelling Units: 241

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.51	0.08 - 1.04	0.15

CAPACITY ANALYSIS

Beach Road at Old County Road (unsignalized) Beach Road at Site Driveway Old County Road at Site Driveway

Beach Road at Old County Road (unsignalized)

3: Beach Road (Route 1A) & Old County Road

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	₩ <u>₽</u>	וטיי	₩.	UDIN
Traffic Vol, veh/h	11	227	323	0	0	14
Future Vol, veh/h	11	227	323	0	0	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	- Otop	None
Storage Length	<u>-</u>	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-, π	0	0	_	0	_
Peak Hour Factor	96	96	89	89	65	65
Heavy Vehicles, %	10	2	2	0	0	15
Mvmt Flow	11	236	363	0	0	22
	- 11	200	500		- 0	LL
	Major1		Major2		Minor2	
Conflicting Flow All	363	0	-	0	621	363
Stage 1	-	-	-	-	363	-
Stage 2	-	-	-	-	258	-
Critical Hdwy	4.2	-	-	-	6.4	6.35
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.29	-	-	-	3.5	3.435
Pot Cap-1 Maneuver	1153	-	-	-	454	654
Stage 1	-	-	-	-	708	-
Stage 2	-	-	-	-	790	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1153	-	-	-	449	654
Mov Cap-2 Maneuver	-	-	-	-	449	-
Stage 1	-	-	-	-	700	-
Stage 2	_	_	-	-	790	-
- 13.g v -						
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		10.7	
HCM LOS					В	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1153	-	-	-	
HCM Lane V/C Ratio		0.01	_	_		0.033
HCM Control Delay (s)		8.2	0	_		10.7
HCM Lane LOS		Α	A	_	_	В
HCM 95th %tile Q(veh)		0	-	_	_	0.1
						J. 1

3: Beach Road (Route 1A) & Old County Road

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	ĵ∍		¥	
Traffic Vol, veh/h	5	408	334	1	1	7
Future Vol, veh/h	5	408	334	1	1	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	_	0	-
Grade, %	-,	0	0	-	0	-
Peak Hour Factor	95	95	90	90	67	67
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	5	429	371	1	1	10
WINTELLOW	- 3	727	011	1		10
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	372	0	-	0	811	372
Stage 1	-	-	_	_	372	-
Stage 2	_	_	_	_	439	_
Critical Hdwy	4.1	_	_	_	6.4	6.2
Critical Hdwy Stg 1	-	_	_	_	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	
	2.2	-	-	-	3.5	3.3
Follow-up Hdwy	1198	_	-		352	5.5 678
Pot Cap-1 Maneuver		-	-	-		
Stage 1	-	-	-	-	702	-
Stage 2	-	-	-	-	654	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1198	-	-	-	350	678
Mov Cap-2 Maneuver	-		-	-	350	-
Stage 1	-	-	-	-	698	-
Stage 2	_	-	-	-	654	-
A	ED		\A/D		C.D.	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		11.1	
HCM LOS					В	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR S	SRI n1
		1198	LDI	1101		607
Capacity (veh/h)		0.004	-	_	-	
HCM Central Delay (c)			-	-	-	0.02
HCM Control Delay (s))	8	0	-	-	11.1
HCM Lane LOS	,	A	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.1

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			WDR		JDR
Lane Configurations	40	4	♣	^	¥	4.5
Traffic Vol, veh/h	12	243	346	0	0	15
Future Vol, veh/h	12	243	346	0	0	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	96	96	89	89	65	65
Heavy Vehicles, %	10	2	2	0	0	15
Mvmt Flow	13	253	389	0	0	23
	//ajor1		Major2		Minor2	
Conflicting Flow All	389	0	-	0	668	389
Stage 1	-	-	-	-	389	-
Stage 2	-	-	-	-	279	-
Critical Hdwy	4.2	-	-	-	6.4	6.35
Critical Hdwy Stg 1	-	_	_	_	5.4	-
Critical Hdwy Stg 2	_	_	_	_	5.4	_
Follow-up Hdwy	2.29	_	_	_		3.435
Pot Cap-1 Maneuver	1127	_	_	_	426	632
Stage 1	1 121	_	_	_	689	- 002
Stage 2	_	_	_		773	_
	-	-			113	-
Platoon blocked, %	1107	-	-	-	400	620
Mov Cap-1 Maneuver	1127	-	-	-	420	632
Mov Cap-2 Maneuver	-	-	-	-	420	-
Stage 1	-	-	-	-	680	-
Stage 2	-	-	-	-	773	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		10.9	
HCM LOS					В	
	t	EBL	EBT	WBT	WBR	SBLn1
Minor Lane/Maior Mym						
Minor Lane/Major Mvm					_	637
Capacity (veh/h)		1127	-	-	-	632
Capacity (veh/h) HCM Lane V/C Ratio		1127 0.011	-	-		0.037
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1127 0.011 8.2	- 0	-	-	0.037 10.9
Capacity (veh/h) HCM Lane V/C Ratio		1127 0.011	-			0.037

3: Beach Road (Route 1A) & Old County Road

Intersection						
Int Delay, s/veh	0.2					
	EDI	EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		¥	
Traffic Vol, veh/h	5	437	358	1	1	8
Future Vol, veh/h	5	437	358	1	1	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	_	0	_
Peak Hour Factor	95	95	90	90	67	67
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	5	460	398	1	1	12
MOLL HOM	5	460	390			IZ
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All	399	0	- viajoiz	0	869	399
Stage 1	-	-	-	-	399	-
Stage 2	-	-	-	-	470	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1171	-	-	-	325	655
Stage 1	-	-	-	-	682	-
Stage 2	-	-	_	-	633	-
Platoon blocked, %		_	_	_	- 500	
Mov Cap-1 Maneuver	1171	_	_	_	323	655
Mov Cap-1 Maneuver	- 11/1	_	_	_	323	-
Stage 1	-	-	-	-	678	-
Stage 2	-	-	-	-	633	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		11.3	
HCM LOS					В	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
	T.	1171	-	1101	- 1001	588
Capacity (veh/h)				-		
HCM Cantral Dalacce		0.004	-	-		0.023
HCM Control Delay (s)		8.1	0	-	-	11.3
HCM Lane LOS	_	Α	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.1

La Caraca Caraca						
Intersection	_					
Int Delay, s/veh	0					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	Þ			4	¥	
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	ŧ 0	-	-	0	0	-
Grade, %	0	_	-	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	0	0	0	0	0
WWITCHIOW	U	U	U	O .	U	U
Major/Minor Ma	ajor1	N	Major2		Minor1	
Conflicting Flow All	0	0	0	0	1	0
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	1	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	_	5.42	-
Critical Hdwy Stg 2	_	_	_	-	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	-	-		_	1022	-
Stage 1	_	_	_	_	-	_
Stage 2	_	_	_	_	1022	_
Platoon blocked, %	_	_		_	1022	
Mov Cap-1 Maneuver	-	_		_	1022	_
Mov Cap-1 Maneuver		-	-	-	1022	<u>-</u>
·	-	-	-			
Stage 1	-	-	-	-	1022	-
Stage 2	-	-	-	-	1022	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		0	
HCM LOS	-				A	
110111 200					,,	
Minor Lane/Major Mvmt		NBT	NBRN	IWLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)		-	-	-	-	-

Intersection						
Int Delay, s/veh	0.6					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	40	्री	\$	•	Y	00
Traffic Vol, veh/h	13	244	349	0	0	20
Future Vol, veh/h	13	244	349	0	0	20
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	96	96	89	89	65	65
Heavy Vehicles, %	10	2	2	0	0	15
Mvmt Flow	14	254	392	0	0	31
Major/Mina	Mais =4		Mais = 0		Ain c = O	
	Major1		Major2		Minor2	
Conflicting Flow All	392	0	-	0	674	392
Stage 1	-	-	-	-	392	-
Stage 2	-	-	-	-	282	-
Critical Hdwy	4.2	-	-	-	6.4	6.35
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.29	-	-	-	3.5	3.435
Pot Cap-1 Maneuver	1124	-	-	-	423	629
Stage 1	-	-	-	-	687	-
Stage 2	-	-	_	-	770	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1124	_	_	_	417	629
Mov Cap-2 Maneuver	-	_	_	_	417	-
Stage 1	_		_		677	_
_		_			770	_
Stage 2	-	<u>-</u>	-	-	770	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.4		0		11	
HCM LOS					В	
		EDI	EBT	WBT	WBR :	
Minor Lane/Major Mvm	nt	EBL				
Capacity (veh/h)	<u>nt</u>	1124	-	-	-	0_0
	nt	1124 0.012	-	-		0.049
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1124	- - 0			0.049
Capacity (veh/h) HCM Lane V/C Ratio		1124 0.012	-	-	-	0.049

Movement	Intersection						
Movement		0.3					
Cane Configurations Cane Confiction Conficting Peds, #/hr 10 440 360 1 1 11 11 11 11 11 11			EDT	MOT	WIDD	CDI	CDD
Traffic Vol, veh/h Future Vol,		EBL			WBR		SBR
Future Vol, veh/h Conflicting Peds, #/hr Conflicting Length - None - Non - None - Non - None - Non - N		40			4		4.4
Conflicting Peds, #/hr O O O O O O O O O						-	
Sign Control Free RTC Free RTC Free RTC None Free RTC None Free RTC None Free RTC None Stop None Stop None Stop None							
None							
Storage Length							
Approach Fig. Fig		-	None	-	None		None
Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 95 90 90 67 67 Peak Hour Factor 95 90 90 90 67 67 Peak Hour Factor 95 90 90 90 67 67 Peak Hour Factor 95 90 90 90 67 67 Peak Hour Factor 95 90 90 90 67 67 Peak Hour Factor 95 90 90 90 90 90 90 90					-		-
Peak Hour Factor 95 95 90 90 67 67 Heavy Vehicles, % 0 0 0 0 0 0 0 Major/Minor Major1 Major2 Minor2 Minor2 Minor2 Conflicting Flow All 401 0 - 0 886 401 Stage 1 - - - - 401 - Stage 2 - - - - 401 - Stage 2 - - - - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - - Critical Hdwy Stg 2 - - - 5.4 - - Critical Hdwy Stg 2 - - - 5.4 - - Critical Hdwy Stg 2 - - - 5.4 - - Critical Hdwy Stg 2 - - - 3.18 653 -		e, # -			-		-
Heavy Vehicles, %	Grade, %						
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 401 0 - 0 886 401 Stage 1 401 - Stage 2 485 - Critical Hdwy Stg 1 5.4 - Critical Hdwy Stg 2 5.4 - Critical Hdwy Stg 2 3.5 3.3 Pot Cap-1 Maneuver 1169 - 318 653 Stage 1 681 - Stage 2 681 - Stage 2 681 - Stage 2 681 - Stage 1 681 - Stage 2 683 - Platoon blocked, % Mov Cap-1 Maneuver 1169 314 653 Mov Cap-2 Maneuver 314 - Stage 1 672 - Stage 1 572 - Stage 2 593 - Mov Cap-2 Maneuver 599 HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A A - B	Peak Hour Factor	95	95	90	90	67	67
Major/Minor Major1 Major2 Minor2 Conflicting Flow All 401 0 - 0 886 401 Stage 1 401 - Stage 2 485 - Critical Hdwy Stg 1 5.4 - Critical Hdwy Stg 2 5.4 - Critical Hdwy Stg 2 3.5 3.3 Pot Cap-1 Maneuver 1169 318 653 Stage 1 681 - Stage 2 681 - Stage 2 623 - Platoon blocked, % Mov Cap-1 Maneuver 1169 314 653 Mov Cap-2 Maneuver 672 - Stage 1 672 - Stage 2 623 - Mov Cap-2 Maneuver 544 - Stage 1 599 HCM Control Delay, s 0.2 0 11.2 Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B	Heavy Vehicles, %	0	0	0	0	0	0
Stage 1	Mvmt Flow	11	463	400	1	1	16
Stage 1							
Stage 1	NA - ' - /NA'	M		4.'. 0		ı' o	
Stage 1 - - - 401 - Stage 2 - - - 485 - Critical Hdwy 4.1 - - - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - - 3.5 3.3 Pot Cap-1 Maneuver 1169 - - - 681 - Stage 1 - - - 623 - Platoon blocked, % - - - - 623 - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 672 - Stage 1 - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2				viajor2			
Stage 2 - - - 485 - Critical Hdwy 4.1 - - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.3 Pot Cap-1 Maneuver 1169 - - 318 653 Stage 1 - - - 623 - Platoon blocked, % - - - 623 - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 314 653 Mov Cap-2 Maneuver - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM Control Delay (s) 8.1 0 - - 599		401	0	-	0		401
Critical Hdwy 4.1 - - 6.4 6.2 Critical Hdwy Stg 1 - - - 5.4 - Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.3 Pot Cap-1 Maneuver 1169 - - 681 - Stage 1 - - - 623 - Platoon blocked, % - - - 623 - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 314 - Stage 1 - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 - - - 599 HCM Lane V/C R		-	-	-	-		-
Critical Hdwy Stg 1 5.4 - Critical Hdwy Stg 2 5.4 - 5.			-	-	-		
Critical Hdwy Stg 2 - - - 5.4 - Follow-up Hdwy 2.2 - - 3.5 3.3 Pot Cap-1 Maneuver 1169 - - 318 653 Stage 1 - - - 681 - Stage 2 - - - 623 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 314 - Stage 1 - - - 672 - Stage 2 - - - 623 - ACM Control Delay, s 0.2 0 11.2 HCM Control Delay, s 0.2 0 11.2 HCM Lane V/C Ratio 0.009 - - - 599 HCM Control Delay (s) 8.1 0 - - 0.03 HCM Control Delay (s) 8.1 0 - - - 0.03	Critical Hdwy	4.1	-	-	-		6.2
Follow-up Hdwy 2.2 3.5 3.3 Pot Cap-1 Maneuver 1169 318 653 Stage 1 681 - 623 - 623 - 623 Platoon blocked, % 314 653 Mov Cap-1 Maneuver 1169 314 653 Mov Cap-2 Maneuver 314 - 534 Stage 1 672 - 672 - 623 - 623 - 623 - 634 Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A - B	Critical Hdwy Stg 1	-	-	-	-	5.4	-
Follow-up Hdwy 2.2 3.5 3.3 Pot Cap-1 Maneuver 1169 318 653 Stage 1 681 - 623 - 623 - 623 Platoon blocked, % 314 653 Mov Cap-1 Maneuver 1169 314 653 Mov Cap-2 Maneuver 314 - 314 - 672 Stage 2 672 - 672 - 623 - 672 Stage 2 5623 - 672 Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A - B	Critical Hdwy Stg 2	-	-	-	-	5.4	-
Stage 1	Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Stage 1 - - - 681 - Stage 2 - - - 623 - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 672 - Stage 1 - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 11.2 HCM Lane LOS A A - B HCM Lane LOS A - B	Pot Cap-1 Maneuver	1169	-	-	-	318	653
Stage 2 - - - 623 - Platoon blocked, % - - - - Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - 672 - Stage 1 - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A - B			-	-	-	681	-
Platoon blocked, %		-	-	-	-		-
Mov Cap-1 Maneuver 1169 - - 314 653 Mov Cap-2 Maneuver - - - - 314 - Stage 1 - - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 11.2 HCM Lane LOS A A - B	Platoon blocked, %		-	-	_		
Mov Cap-2 Maneuver		1169	-	_	_	314	653
Stage 1 - - - 672 - Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 11.2 HCM Lane LOS A A - B			_	_	_		-
Stage 2 - - - 623 - Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 - - 599 HCM Lane V/C Ratio 0.009 - - 0.03 HCM Control Delay (s) 8.1 0 - - 11.2 HCM Lane LOS A A - - B			_	_	_		_
Approach EB WB SB HCM Control Delay, s 0.2 0 11.2 HCM LOS B Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A - B	•		_	_	_		
CARD Control Delay, s 0.2 0 11.2 B	Olago Z					020	
CARD Control Delay, s 0.2 0 11.2 B							
HCM LOS	Approach	EB		WB			
Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 1169 599 HCM Lane V/C Ratio 0.009 0.03 HCM Control Delay (s) 8.1 0 - 11.2 HCM Lane LOS A A - B	HCM Control Delay, s	0.2		0		11.2	
Capacity (veh/h) 1169 - - 599 HCM Lane V/C Ratio 0.009 - - - 0.03 HCM Control Delay (s) 8.1 0 - - 11.2 HCM Lane LOS A A - B	HCM LOS					В	
Capacity (veh/h) 1169 - - 599 HCM Lane V/C Ratio 0.009 - - - 0.03 HCM Control Delay (s) 8.1 0 - - 11.2 HCM Lane LOS A A - B							
Capacity (veh/h) 1169 - - 599 HCM Lane V/C Ratio 0.009 - - - 0.03 HCM Control Delay (s) 8.1 0 - - 11.2 HCM Lane LOS A A - B			EDI	EDT	WDT	MDD	201 4
HCM Lane V/C Ratio 0.009 - - 0.03 HCM Control Delay (s) 8.1 0 - - 11.2 HCM Lane LOS A A - B		It		FRI	WBI	WRK ?	
HCM Control Delay (s) 8.1 0 11.2 HCM Lane LOS A A B				-	-		
HCM Lane LOS A A B					-	-	
	HCM Control Delay (s)				-	-	
HCM 95th %tile O(veh) 0 0.1				Α	-	-	
0.1	HCM 95th %tile Q(veh)		0	-	-	-	0.1

Beach Road at Site Driveway

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		सी	₽		W	
Traffic Vol, veh/h	1	243	346	0	0	3
Future Vol, veh/h	1	243	346	0	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e.# -	0	0	_	0	-
Grade, %	_	0	0	_	0	_
Peak Hour Factor	96	96	89	89	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1	253	389	0	0	3
WWW.		200	000	U	- 0	J
Major/Minor	Major1	<u> </u>	Major2	ا	Minor2	
Conflicting Flow All	389	0	-	0	644	389
Stage 1	-	-	-	-	389	-
Stage 2	-	-	-	-	255	-
Critical Hdwy	4.12	-	_	_	6.42	6.22
Critical Hdwy Stg 1	-	-	-	_	5.42	-
Critical Hdwy Stg 2	_	_	_	_	5.42	_
Follow-up Hdwy	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1170	_	_	_	437	659
Stage 1	- 1110	_	_	<u>-</u>	685	-
Stage 2	_	_	_	-	788	-
Platoon blocked, %	<u>-</u>	_			100	_
	1170	-	-	-	127	659
Mov Cap-1 Maneuver		-	-	-	437	
Mov Cap-2 Maneuver	-	-	-	-	437	-
Stage 1	-	-	-	-	684	-
Stage 2	-	-	-	-	788	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		10.5	
HCM LOS					В	
					U	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1170	-	-	-	659
HCM Lane V/C Ratio		0.001	-	-	-	0.005
HCM Control Delay (s)		8.1	0	-	-	10.5
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0
,						

Intersection						
Int Delay, s/veh	0.1					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	^	4	\$	^	Å	^
Traffic Vol, veh/h	3	438	359	0	0	2
Future Vol, veh/h	3	438	359	0	0	2
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	95	95	90	90	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	461	399	0	0	2
Major/Minor	Major1		/aiar?		Minor	
	Major1		//ajor2		Minor2	000
Conflicting Flow All	399	0	-	0	866	399
Stage 1	-	-	-	-	399	-
Stage 2	-	-	-	-	467	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1160	-	-	-	324	651
Stage 1	-	-	-	-	678	-
Stage 2	-	-	-	-	631	_
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1160	-	-	_	323	651
Mov Cap-2 Maneuver	-	-	_	_	323	-
Stage 1	_	_	_	_	676	_
Stage 2	_	_	_	_	631	<u>-</u>
Olago Z					551	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		10.5	
HCM LOS					В	
NA:	.1	EDI	EDT	WDT	WDD	ODL 4
Minor Lane/Major Mvm	IL	EBL	EBT	WBT	WBR	
Capacity (veh/h)		1160	-	-	-	651
HCM Lane V/C Ratio		0.003	-	-		0.003
HCM Control Delay (s)		8.1	0	-	-	10.5
HCM Lane LOS		Α	Α	-	-	В
HCM 95th %tile Q(veh)		0	-	-	-	0

Old County Road at Site Driveway

Intersection						
Int Delay, s/veh	1					
	•					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	Þ			4	¥	
Traffic Vol, veh/h	12	1	0	15	5	0
Future Vol, veh/h	12	1	0	15	5	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	65	65	65	65	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	2	0	23	5	0
		_				
Major/Minor N	/lajor1	1	Major2	ľ	Minor1	
Conflicting Flow All	0	0	20	0	42	19
Stage 1	-	-	-	-	19	-
Stage 2	-	-	-	-	23	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	_	_	_	-	5.42	-
Critical Hdwy Stg 2	-	_	_	_	5.42	_
Follow-up Hdwy	_	_	2.218	_	3.518	3.318
Pot Cap-1 Maneuver	_	_	1596	-	969	1059
Stage 1	_	_		_	1004	
Stage 2	_			_	1004	_
Platoon blocked, %	_				1000	_
-		-	1596	-	969	1059
Mov Cap-1 Maneuver	-	-	1090	-		1059
Mov Cap-2 Maneuver	-	-	-	-	969	-
Stage 1	-	-	-	-	1004	-
Stage 2	-	-	-	-	1000	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		8.7	
HCM LOS	U		U		Α	
I IOIVI LOG					A	
Minor Lane/Major Mvmt	t _	NBT	NBRN	WLn1	SBL	SBT
Capacity (veh/h)		_	_		1596	_
HCM Lane V/C Ratio		-	_	0.006	-	-
HCM Control Delay (s)		_	_		0	_
HCM Lane LOS		_	_	A	A	_
HCM 95th %tile Q(veh)		_	_	0	0	_
				J	J	

lata a a a ti a a						
Intersection	0.0					
Int Delay, s/veh	0.9					
Movement	NBT	NBR	SBL	SBT	NWL	NWR
Lane Configurations	ĥ			ની	¥	
Traffic Vol, veh/h	6	5	0	9	3	0
Future Vol, veh/h	6	5	0	9	3	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	67	67	67	67	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	9	7	0	13	3	0
				.0		
				-		
	ajor1	ı	Major2		Minor1	
Conflicting Flow All	0	0	16	0	26	13
Stage 1	-	-	-	-	13	-
Stage 2	-	-	-	-	13	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1602	-	989	1067
Stage 1	-	-	-	-	1010	-
Stage 2	_	-	-	_	1010	-
Platoon blocked, %	_	_		_	.515	
Mov Cap-1 Maneuver	_		1602	_	989	1067
Mov Cap-2 Maneuver	_	_	1002	_	989	-
Stage 1		-		_	1010	_
	-	-	-	-	1010	-
Stage 2	-	-	-	-	1010	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		8.7	
HCM LOS					Α	
N.C. 1 /24 : N.C. 1		NET	NEE	11.471	05:	007
Minor Lane/Major Mvmt		NBT		WLn1	SBL	SBT
Capacity (veh/h)		-	-		1602	-
HCM Lane V/C Ratio		-	-	0.003	-	-
HCM Control Delay (s)		-	-	8.7	0	-
		-	-	8.7 A 0	0 A 0	-