MILLENNIUM ENGINEERING, INC.

Land Surveyors and Civil Engineers

Stormwater Management Report

For The

SITE PLAN

AT

163 ELM STREET SALISBURY, MA

Prepared for:

F \& D REALTY LLC
1 MELVIN ST, SUITE C
WAKEFIELD, MA 01880

Date: JUNE 21, 2022
REVISED: JANUARY 4, 2023
REVISED: FEBRUARY 7, 2023
REVISED: MARCH 1, 2023

1.0 INTRODUCTION

1.1 Project Description

F \& D Realty LLC proposes to construct two buildings with associated gravel storage areas. Approximately 796 feet of paved driveway, a public water \& sewer distribution network, and a stormwater management system will be constructed to support the development. Private utilities including gas, electric, telephone, and cable will also support the development. Access to the site will continue to be provided via Elm Street.

1.2 Existing Site Characteristics

The subject parcel is described as Tax Map 9, Lot No. 31 on the Town of Salisbury, MA Assessor's Map and is bordered by Elm Street to the north. The property is located in the C and C-3 Commercial Zoning Districts. Elevations within the project site range from 52.00^{\prime} along Elm Street to 8.00^{\prime} in the wetlands at the rear of the site. These elevations are based upon 1988 NAVD.

The existing parcel is mostly hard packed gravel and is used for storage of materials and vehicles. Up until around 2007, the site was mostly undeveloped woodland with a singlefamily dwelling at the front of the property. Development of the parcel began with the removal of the dwelling and continued with clearing of a large portion of the site. The remainder of the site is undeveloped woodland. Stormwater runoff patterns generally flow from north to south across the property, feeding the bordering vegetated wetlands. See the accompanying plan for a more detailed description of the existing site conditions and topography.

The lot consists of several soil groups: Windsor loamy sand, 255A (Hydrologic Soil Group A); Deerfield loamy fine sand, 256A (Hydrologic Soil Group A); Hinckley and Windsor soils, 257E (Hydrologic Soil Group A); Ipswich and Westbrook mucky peats, 712A (Hydrologic Soil Group A/D); and Windsor-Rock outcrop complex, 721D (Hydrologic Soil Group A). See Appendix H for the NRCS soil map. In addition, soil evaluations were performed onsite to assist in the design of the stormwater treatment facilities. 21 test pits were performed in March, May and July 2022. Although the entire site is generally mapped as primarily " A " soils, as indicated in the soil evaluations there is a clear break in the soil composition about $2 / 3$ rds of the way into the site from sandy soils to silty loam soils. Thus, the rear of the site is modeled as a "C" soil in the HydroCAD calculations.

1.3 Proposed Site Features

The proposed development consists of 2 proposed buildings along nearly 800 linear feet of 24^{\prime} wide paved driveway. Driveway profiles throughout the development are 1.0%. Access into the development is from Elm Street.

The development will include the installation of public and private utilities. The development will tie into the existing water distribution system and the existing wastewater
collection system to provide service to the two buildings. Natural gas, electrical, telephone and cable service will be provided.

The storm water management system for the proposed development will consist of a typical pipe and catch basin/manhole drainage network within the proposed roadway. The two building sites will be designed to grade towards the roadway and connect to the drainage network.

Underground infiltration systems are proposed to infiltrate the runoff from the drainage network and gravel areas at the front of the site. A Contech treatment device is proposed to treat the stormwater before it discharges to the infiltration systems.

2.0 WATERSHED ANALYSIS AND METHODOLOGY

The stormwater runoff management system was analyzed using the storm events of the 2year, 10 -year and 100 -year frequency. The analysis was performed using HydroCAD, version 10.00. Using USDA NRCS TR-20 and TR-55 methods of estimating runoff, the program uses the measured characteristics of the site and computes runoff produced by simulated rainfall events. The results are then used to design runoff control structures.

Existing drainage area boundaries were developed using an onsite topographic survey performed by Millennium Engineering, Inc. Proposed site development boundaries were developed from proposed grades and ground cover designed to minimize site storm water management structure requirements.

Hydrologic soil groups and curve numbers were estimated for existing and proposed developed conditions using available NRCS Soil Maps, current vegetation, and terrain.

3.0 DRAINAGE ANALYSIS

The purpose of the drainage analysis is two-fold. The first is to analyze and quantify the pre-development runoff flows through the site. The second purpose is to evaluate the impact of the proposed development on drainage patterns and flows, both within and outside the site, and to design a stormwater management system to adequately convey postdevelopment runoff.

The design of the stormwater management system has the following goals:
1.) Minimize or eliminate erosion and sedimentation during construction as well as after development.
2.) To ensure that post-development flows do not have an adverse affect on downstream drainage structures and landowners.
3.) To design a stormwater and treatment system which will carry the surface runoff and satisfy goals one and two.

To determine the hydrological effect of the proposed development on the watershed, the existing conditions must first be analyzed.

4.0 WATERSHED DESCRIPTION: EXISTING CONDITIONS

Depending on the soil classification, type of ground cover present and the direction of the flow of runoff, the existing site is divided into watershed areas. Watershed area 100 consists of the rear half of the site and it flows towards the marsh. Area 200S consists of the front of the site and it feeds the isolated wetland. See the attached plans (Watersheds and HydroCad Data, sheet 1 of 2) for the watershed area boundaries and the predevelopment time of concentration flow paths.

4.1 WATERSHED ANALYSIS: EXISTING CONDITIONS

The existing conditions were modeled using the tabular hydrograph method with a Type III synthetic storm distribution for the 2,10 and 100 -year storm recurrence intervals. Runoff hydrographs were produced to estimate existing peak discharge.

Flows for the three storm simulations are as follows:
Existing Peak Runoff Rates (c.f.s.)

Subcatchment	Size	$\mathbf{2 ~ Y r}$	$\mathbf{1 0} \mathbf{~ Y r}$	$\mathbf{1 0 0} \mathbf{~ Y r}$
	(Acres)	Storm	Storm	Storm
100	7.91	1.18	4.4	10.8
200	3.76	0.0	0.0	0.2
		$\mathbf{2 ~ Y r}$	$\mathbf{1 0} \mathbf{~ Y r}$	$\mathbf{1 0 0} \mathbf{~ Y r}$
Marsh		1.18	4.4	10.8
Isolated Wetland		0.0	0.0	0.2

The pre-development drainage calculations can be found in Appendix C.

5.0 WATERSHED DESCRIPTION: POST-DEVELOPMENT CONDITIONS

To determine the post development runoff, new watersheds, runoff curve numbers and times of concentration were generated reflecting the changes in the topography and surface cover. The post-development watersheds are shown on the attached plans (Watersheds and HydroCad Data, sheet 2 of 2). Watershed areas $1 \mathrm{~S}-11 \mathrm{~S}$ consist of the proposed site driveway, paved parking areas, buildings and gravel areas and it connects to the proposed
drainage system which discharges into underground infiltration system \#1. Areas 12S 14 S feed the proposed underground infiltration system \#2. Area 100 consists of the remainder of the rear half of the site and it flows towards the marsh.

5.1 WATERSHED ANALYSIS: POST-DEVELOPMENT CONDITIONS

The proposed developed conditions were modeled using the tabular hydrograph method with a Type III synthetic storm distribution for the 2,10 and 100 -year storm recurrence intervals. Runoff hydrographs were produced to estimate the post-development peak discharge.

Flows for the three storm simulations are as follows:

> Post-Developed Peak Runoff Rates (c.f.s.)

Subcatchment	Size	$\mathbf{2 ~ Y r}$	$\mathbf{1 0} \mathbf{~ Y r}$	$\mathbf{1 0 0} \mathbf{Y r}$
	(Acres)	Storm	Storm	Storm
1 S	0.12	0.0	0.1	0.3
2 S	0.06	0.1	0.2	0.4
3 S	0.43	0.2	0.6	1.3
3.1 S	0.15	0.4	0.6	0.9
4 S	0.14	0.0	0.1	0.3
5 S	0.35	0.9	1.4	2.1
6 S	0.15	0.1	0.3	0.6
7 S	0.71	1.2	2.2	3.6
8 S	0.13	0.4	0.6	0.8
9 S	0.33	0.9	1.4	2.1
10 S	0.32	0.5	0.9	1.5
11 S	0.88	1.5	2.7	4.4
12 S	0.45	1.0	1.6	2.5
13 S	0.59	1.2	2.1	3.3
14 S	1.26	3.6	5.3	7.8
100	5.60	0.6	2.8	7.3
		$\mathbf{2 ~ Y r}$	$\mathbf{1 0} \mathbf{~ Y r}$	$\mathbf{1 0 0} \mathbf{~ Y r}$
Marsh		0.6	2.8	10.6

The post-development drainage calculations can be found in Appendix D.

6.0 STORMWATER STANDARDS CALCULATIONS

The Stormwater Management Plan developed for this project incorporates water quantity and quality controls that will protect surface and groundwater resources and adjacent
properties from potential impacts due to increased impervious areas on the site. The following provides a brief discussion on how the proposed project will meet the ten established performance standards of the DEP Stormwater Management Policy.

1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

No proposed site stormwater conveyance systems will discharge untreated stormwater directly to wetlands or surrounding areas. Stormwater runoff from the proposed driveway and gravel areas will discharge into the proposed infiltration basin and constructed wetland.
2. Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

Stormwater runoff peak discharge rates from the proposed development are less than existing conditions for the $2-\mathrm{yr}, 10-\mathrm{yr}$, and $100-\mathrm{yr} 24$-hour Type III storm events.
3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Required Recharge volume, Rv (A soil) $=\mathrm{F}$ * impervious area

$$
\begin{aligned}
& =0.60 \text { in } * 162,860 \text { s.f. } \\
& =8,143 \text { c.f. }
\end{aligned}
$$

Total Recharge required $=8,143$ c.f.
Total Recharge provided $=25,555$ c.f.

Drawdown Calculations

Underground Infiltration System \#1
Drawdown Time $=$ \qquad
(K) (Bottom Area)
$R v=$ Storage Volume $=1,111$ c.f.

K=Saturated Hydraulic Conductivity=8.27 in./hr Bottom Area=830 s.f.

Drawdown Time $=\frac{1,111 \text { c.f. }}{(8.27 \mathrm{in} / \mathrm{hr})(1 \mathrm{ft} / 12 \mathrm{in})(830 \text { s.f. })}$
Drawdown Time $=1.9$ hours
Underground Infiltration System \#2
Drawdown Time $=$ \qquad
$R v=$ Storage Volume $=5,692$ c.f.
$\mathrm{K}=$ Saturated Hydraulic Conductivity=8.27 in./hr Bottom Area=4,886 s.f.

Drawdown Time $=\frac{5,692 \text { c.f. }}{(8.27 \mathrm{in} / \mathrm{hr})(1 \mathrm{ft} / 12 \mathrm{in})(4,886 \text { s.f. })}$
Drawdown Time $=1.7$ hours
Underground Infiltration System \#3
Drawdown Time $=$ \qquad
$\mathrm{Rv}=$ Storage Volume $=19,298$ c.f.
$\mathrm{K}=$ Saturated Hydraulic Conductivity=8.27 in./hr
Bottom Area=2,645 s.f.
Drawdown Time $=$
$\frac{19,298 \text { c.f. }}{(8.27 \mathrm{in} / \mathrm{hr})(1 \mathrm{ft} / 12 \mathrm{in})(2,645 \text { s.f. })}$

Drawdown Time $=10.6$ hours
4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:
a. Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained; b. Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
c. Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The Massachusetts DEP requires water quality calculations based on 1.0 inch of runoff for the total impervious area associated with the proposed development. The following calculation identifies the water quality volume required.

Total Impervious Area $=145,820$ s.f.
$145,820$ s.f. x 1.0 " / 12 (to convert to ft$)=12,151$ c.f. of runoff to be treated for water quality.

The proposed development's drainage system must meet the MA Office of Coastal Zone management (CZM)/MA Department of Environmental Protection (DEP) Stormwater Management policy standard of removing 80% of the average annual load of Total Suspended Solids (TSS). The stormwater management system for this development will include the use of a Contech CDS unit for treatment prior to discharge into the drainage system. The following demonstrates that the proposed storm water management system for the development satisfies the requirement for treatment of 80% of total Suspended Solids:

See attached TSS removal charts (Appendix F)

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated there under at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00 .

This project does not qualify as a land use with higher potential pollutant loads.
6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in

314 CMR 3.04(2)(a) 1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

This project does not fall within a critical area.
7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The proposed development is not considered a redevelopment project and does not meet the requirements of definition for this standard.
8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

The proposed development design includes erosion and sediment controls to minimize the potential for sedimentation in down gradient resource areas. Reference is made to the project plans for additional information.
9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

An O\&M plan has been developed and is included in this report.
10. All illicit discharges to the stormwater management system are prohibited.

No illicit discharges exist on the site.

7.0 CONCLUSIONS

The results of this report indicate the proposed stormwater management system for the proposed development is capable of storing and treating the runoff for the 2-year, 10-year and 100-year storm events.

The peak flow rates in this analysis have been conservatively estimated for both the preand post-development conditions. Based on the results of the analyses described herein,
the proposed development will not increase the runoff rate leaving the site. The proposed storm water management facilities shown on the Site Plan will produce no adverse storm water runoff impacts under the storms analyzed.

Massachusetts Department of Environmental Protection
Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. ${ }^{1}$ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8^{2}
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

[^0]
B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide

Massachusetts Department of Environmental Protection
Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?
【 New developmentRedevelopment
\square Mix of New Development and Redevelopment

Checklist (continued)

Checklist for Stormwater Report

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of

No disturbance to any Wetland Resource AreasSite Design Practices (e.g. clustered development, reduced frontage setbacks)
\square Reduced Impervious Area (Redevelopment Only)
\square Minimizing disturbance to existing trees and shrubsLID Site Design Credit Requested:
Credit 1Credit 2
Credit 3Use of "country drainage" versus curb and gutter conveyance and pipeBioretention Cells (includes Rain Gardens)
\square Constructed Stormwater Wetlands (includes Gravel Wetlands designs)Treebox FilterWater Quality SwaleGrass ChannelGreen Roof
\boxtimes Other (describe):
Underground Infiltration Structures

Standard 1: No New Untreated Discharges

\boxtimes No new untreated discharges
\boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
\boxtimes Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

Checklist for Stormwater Report

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
\square Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
\boxtimes Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2 -year and 10 -year 24 -hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes Soil Analysis provided.
\boxtimes Required Recharge Volume calculation provided.
\square Required Recharge volume reduced through use of the LID site Design Credits.
\boxtimes Sizing the infiltration, BMPs is based on the following method: Check the method used.
【 StaticSimple DynamicDynamic Field ${ }^{1}$
\square Runoff from all impervious areas at the site discharging to the infiltration BMP.
\square Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
\boxtimes Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
\square Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:
\square Site is comprised solely of C and D soils and/or bedrock at the land surface
\square M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
\square Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.
${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

Checklist for Stormwater Report

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24 -hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
\square Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
\boxtimes A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
\boxtimes Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
\square is within the Zone II or Interim Wellhead Protection Area
\square is near or to other critical areas
\boxtimes is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
\square The Required Water Quality Volume is reduced through use of the LID site Design Credits.
\boxtimes Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)

Standard 4: Water Quality (continued)

Checklist for Stormwater Report

The BMP is sized (and calculations provided) based on:

【 The $1 / 2^{\prime \prime}$ or 1 " Water Quality Volume or

\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.

The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
\square A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

\square The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
\boxtimes The NPDES Multi-Sector General Permit does not cover the land use.
\square LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
\square All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
\square The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\square Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

Checklist for Stormwater Report

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
\square Limited Project
\square Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
\square Bike Path and/or Foot Path
\square Redevelopment Project
\square Redevelopment portion of mix of new and redevelopment.
\square Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards $4-6$ to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
\boxtimes A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

Checklist for Stormwater Report

The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins.
\square The project is not covered by a NPDES Construction General Permit.
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
\boxtimes The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

\boxtimes The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
\boxtimes Name of the stormwater management system owners;
\boxtimes Party responsible for operation and maintenance;
\searrow Schedule for implementation of routine and non-routine maintenance task;;
\boxtimes Plan showing the location of all stormwater BMPs maintenance access areas;
\square Description and delineation of public safety features;
\square Estimated operation and maintenance budget; and
\boxtimes Operation and Maintenance Log Form.
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:

A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

\boxtimes The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
\boxtimes An Illicit Discharge Compliance Statement is attached;
NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post-construction BMPs.

9.0 APPENDIX B - LONG-TERM POLLUTION PREVENTION PLAN AND

 OPERATION \& MAINTENANCE PLAN
LONG-TERM POLLUTION PREVENTION PLAN

AND

OPERATION \& MAINTENANCE PLAN

For

F \& D REALTY LLC 1 MELVIN STREET SUITE C WAKEFIELD, MA 01880

PROPOSED SITE IMPROVEMENTS AT 163 ELM STREET

PREPARED BY:
MILLENNIUM ENGINEERING, INC.
62 ELM STREET
SALISBURY, MA 01952
(978) 463-8980

JANUARY 4, 2023
FEBRUARY 7, 2023

This long-term Stormwater Management System Operations and Maintenance (O\&M) Plan, filed with the Town of Salisbury, shall be implemented at 163 Elm Street to ensure that the stormwater management system functions as designed. The Owner holds the primary responsibility for overseeing and implementing the O\&M Plan and assigning a Property Manager who will be responsible for the proper operation and maintenance of the stormwater structures. In case of transfer of property ownership, future property owners shall be notified of the presence of the stormwater management system and the requirements for proper implementation of the O\&M Plan. Included in the manual is a Stormwater Management O\&M Plan identifying the key components of the stormwater system and a log for tracking inspections and maintenance.

The stormwater management system protects and enhances the stormwater runoff water quality through the removal of sediment and pollutants, and source control significantly reduces the amount of pollutants entering the system. Preventive maintenance of the system will include a comprehensive source reduction program of regular vacuuming and litter removal, and prohibitions on the use of pesticides.

The purpose of the Stormwater Operations and Maintenance (O\&M) plan is to ensure inspection of the system, removal of accumulated sediments, oils, and debris, and implementation of corrective action and record keeping activities.

The ongoing responsibility is the Owner, its successors and assigns. Adequate maintenance is defined in this document as good working condition.

Contact information is provided below:

Responsibility for Operations and Maintenance During Construction
Mark Cardillo
1 Melvin Street Suite C
Wakefield, MA 01880

(617) 719-2238

EROSION AND SEDIMENT CONTROL BMPs

Minimize Disturbed Area and Protect Natural Features and Soil

Topsoil

Topsoil stripped from the immediate construction area can be temporarily stockpiled on site providing that the perimeter of the stockpiles is properly staked with silt fence at the toe of slope. The stockpiles shall be in areas that will not interfere with construction and at least 15 feet away from areas of concentrated flows or pavement. The area shall be inspected weekly for erosion and immediately after storm events. Areas on or around the stockpile that have eroded shall be stabilized immediately with erosion controls.

Stabilize Soils

Temporary Stabilization

- All vegetated areas which do not exhibit a minimum of 85% vegetative growth by Oct. 15 th, or which are disturbed after Oct. 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The placement of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85% vegetative growth by Oct. 15 th, or which are disturbed after Oct. 15th, shall be stabilized with stone or erosion control blankets appropriate for the design flow conditions.
- After November 15th, incomplete road surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel.

Protect Slopes

Geotextile erosion control blankets shall be used to provide stabilization for slopes exceeding 3:1. Prepare soil before installing erosion control blanket, including any necessary application of lime, fertilizer, and seed. Begin at the top of the slope by anchoring the blanket in a $6^{\prime \prime}$ deep x $6^{\prime \prime}$ wide trench with approximately $12^{\prime \prime}$ extended beyond the upslope portion of the trench. Anchor the blanket with a row of staples/stakes approximately 12 apart in the bottom of the trench. Backfill and compact the trench after stapling. Apply seed to compacted soil and fold remaining 12" portion of back over seed and compacted soil. Secure over compacted soil with a row of staples/stakes spaced approximately 12 " apart across the width of the blanket. Roll erosion control blanket either down or horizontally across the slope. Blanket will unroll with appropriate side against the soil surface. All blankets must be securely fastened to soil surface by placing staples/stakes in appropriate locations as shown in the staple pattern guide. When using the dot system, staples/stakes should be placed through each of the colored dots corresponding to the appropriate staple pattern. The edges of parallel blankets must be stapled with approximately $2^{\prime \prime}-5$ " overlap. Consecutive blankets spliced down the slope must be placed end over end (shingle style) with an approximate 3" overlap. Staple through
overlapped area, approximately $12^{\prime \prime}$ apart across entire blanket's width. In loose soil conditions, the use of staple or stake lengths greater than 6 " may be necessary to properly anchor the blanket.

Establish Perimeter Controls and Sediment Barriers

Silt fence shall be installed along the limit of work. The silt fence shall be installed before construction begins. Wooden posts shall be doubled and coupled at filter cloth seams. Filter cloth shall be fastened securely to support netting with ties spaced every 24 " at top, midsection, and bottom. When two sections of filter cloth adjoin each other, they shall be overlapped by 6 inches, folded and stapled. Woodchips shall be installed at downslope side of silt fence and shall remain after silt fence is removed. Silt fence shall be removed upon completion of the project and stabilization of all soil.

Maintenance:

1. Silt fence shall be inspected immediately after each rainfall and at least daily during prolonged rainfall. Any repairs that are required shall be made immediately.
2. If the fabric on the silt fence shall decompose or become ineffective during the expected life of the fence, the fabric shall be replaced promptly.
3. Sediment deposits shall be inspected after every storm event. The deposits shall be removed when they reach approximately one-half the height of the barrier.
4. Sediment deposits that are removed or left in place after the fabric has been removed shall be graded to conform with the existing topography and vegetated.

Establish Stabilized Construction Entrance

A stabilized construction entrance shall be installed before construction begins on the site. The stone anti-tracking pad shall remain in place until the subgrade of pavement is installed.

1. Stone shall be $4-6$ " stone, reclaimed stone, or recycled concrete equivalent.
2. The length of the stabilized entrance shall not be less than 50 '.
3. The thickness of the stone for the stabilized entrance shall not be less than 12 ".
4. Geotextile filter cloth shall be placed over the entire area prior to placing the stone.
5. All surface water that is flowing to or diverted toward the construction entrance shall be piped beneath the entrance. If piping is impractical, a berm with $5: 1$ slopes that can be crossed by vehicles may be substituted for the pipe.
6. The entrance shall be maintained in a condition that will prevent tracking or flowing of sediment onto public rights-of-way. This may require periodic top-dressing with additional stone as conditions demand and repair and/or cleanout of any measures used to trap sediment. All sediment spilled, washed, or tracked onto public rights-of-way must be removed promptly.
7. Wheels shall be cleaned to remove mud prior to entrance onto public rights-of way. When washing is required, it shall be done on an area stabilized with stone which drains into an approved sediment trapping device.

Catch Basin Inlet Protection

Inlet protection devices intercept and/or filter sediment before it can be transported from a site into the storm drain system and discharged into a lake, river, stream, wetland, or other waterbody. These devices also keep sediment from filling or clogging storm drain pipes, ditches, and downgradient sediment traps or ponds. A siltsack or approved equal shall be used for catch basin inlet protection. It should be inspected weekly. When the restraint cord is no longer visible, siltsack is full and shall be emptied.

POST-CONSTRUCTION BMPs

Snow and Snow Melt Management
Proper management of snow and snow melt, snow removal and storage, use of deicing compounds, and other practices can minimize major runoff and pollutant loading impacts. Snow will be stored in the areas shown on the site plan. Snow is not to be plowed or piled within the wetlands, wetland buffer, or constructed wetland. Use of alternative deicing compounds, such as calcium chloride and calcium magnesium acetate, will be investigated for use. Professional services will be used for snow management.

Catch Basins

Catch basins are incorporated in the proposed development's stormwater management plan. The sump provides for settlement of suspended solids and a hood is provided to remove floatables and trapped hydrocarbons. It is not anticipated that the proposed paved areas will become an area of high sediment loading. The sump should be inspected and cleaned at least four times per year; the more frequent the cleaning, the less likely sediment will be resuspended and subsequently discharged. Catch basin sediments and debris shall be disposed of at an approved DEP landfill. The Owner shall be responsible for the catch basin cleaning operations.

CDS System
A CDS2015-5 and 1515-3 is incorporated into the site design for treatment for the proposed Drainage system. At a minimum, the unit shall be inspected twice per year (spring and fall). The CDS unit should be vacuum cleaned when the level of sediment has reached 75% of capacity in the isolated sump. Sediments and debris shall be disposed of at an approved DEP landfill. The Owner shall be responsible for the CDS cleaning operations.

Sediment Forebay

A sediment forebay is included in the stormwater management plan as pretreatment for the constructed wetland. The forebay shall be inspected two times per year by a landscaping contractor hired by the Owner. Sediments removed during cleaning shall be disposed of at an approved DEP landfill.

Underground Infiltration System

Infiltration chambers are incorporated into the site design for infiltration. The infiltration systems shall be inspected after every major storm event in the first 4 months after construction to ensure proper function. Inspection ports shall be utilized for access and assessment. After the four-month period, the systems shall be inspected a minimum of twice per year. Any grit or sediment found within the chambers impacting infiltration shall be removed by manual or mechanical methods, such as a vacuum truck. The owner will be responsible for proper maintenance of the infiltration systems.

Peastone Diaphragm

A stone diaphragm is proposed along the exterior fence of the dog play areas. The stone diaphragm shall be inspected twice per year (spring and fall). Any sediment and debris should be removed manually before the stone is adversely impacted. The oner will be responsible for proper maintenance of the stone trenches.

Storage Area

Inspect the gravel regularly, especially after major storm events. Notation of any erosion, rills, and areas of sedimentation should be made and repaired immediately. The surface shall be continually monitored during all extended dry conditions to address potential dust conditions. Water application or the spreading of calcium chloride shall take place, as needed, to alleviate dust conditions impacting abutting properties and the environment.

FINAL STABILIZATION

Permanent Seeding

Loam and hydroseed any disturbed surfaces after the final design grades have been achieved. A minimum of $6^{\prime \prime}$ of loam shall be installed. Seed mix shall be MA State Slope Mixture (50% creeping red fescue, 30% Kentucky 31 tall fescue, 10% annual ryegrass, 5% red top, 5% ladino clover) and MA State Plot Mixture (50% creeping red fescue, 25% 85/80 Kentucky bluegrass, 10% annual ryegrass, 10% red top, 5% ladino clover).

Construction debris, trash and temporary BMPs (including silt fences, material storage areas, and inlet protection) will also be removed and any areas disturbed during removal will be seeded immediately.

INSPECTION \& MAINTENANCE LOG

Activity	Date	Inspected By	Findings
Deep Sump			
Catch Basin			
(4x per year)			

CDS
Cleaning
(2x per year)

Infiltration Chambers
Inspection
(2x per year)

Peastone Diaphragm
Cleaning
(2x per year min.)

Rip-rap Outlets \&
Emergency Spillway
Protection
(2x per year)

Roof Drain

Cleanouts
(2x per year)

Vegetation and
Landscaping
(2x per year)
10.0 APPENDIX C - PRE-DEVELOPMENT DRAINAGE CALCULATIONS

M183284-Existing 1-25-23

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft})$	CN	Description (subcatchment-numbers)
26,000	39	$>75 \%$ Grass cover, Good, HSG A (200S)
55,000	96	Gravel surface, HSG A (100S)
2,650	98	Paved roads w/curbs \& sewers, HSG A (200S)
3,075	98	Roofs, HSG A (200S)
$\mathbf{2 5 6 , 7 4 3}$	30	Woods, Good, HSG A (100S, 200S)
$\mathbf{1 6 5 , 0 5 9}$	$\mathbf{7 0}$	Woods, Good, HSG C (100S)
$\mathbf{5 0 8 , 5 2 7}$	$\mathbf{5 1}$	TOTAL AREA

M183284-Existing 1-25-23
Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
343,468	HSG A	100 S, 200S
0	HSG B	
165,059	HSG C	100 S
0	HSG D	
0	Other	
$\mathbf{5 0 8 , 5 2 7}$		TOTAL AREA

M183284-Existing 1-25-23

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Ground Covers (all nodes)						
$\begin{array}{r} \text { HSG-A } \\ \text { (sq-ft) } \end{array}$	$\begin{array}{r} \text { HSG-B } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{aligned} & \text { HSG-C } \\ & \text { (sq-ft) } \end{aligned}$	$\begin{array}{r} \text { HSG-D } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{aligned} & \text { Other } \\ & \text { (sq-ft) } \end{aligned}$	$\begin{array}{r} \text { Total } \\ \text { (sq-ft) } \end{array}$	Ground Cover
26,000	0	0	0	0	26,000	>75\% Grass
						cover, Good
55,000	0	0	0	0	55,000	Gravel surface
2,650	0	0	0	0	2,650	Paved roads w/curbs \& sewers
3,075	0	0	0	0	3,075	Roofs
256,743	0	165,059	0	0	421,802	Woods, Good
343,468	0	165,059	0	0	508,527	TOTAL AREA

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 100S: Area 100S Runoff Area=344,527 sf 0.00% Impervious Runoff Depth >0.37 " Flow Length=720' $\mathrm{Tc}=32.9 \mathrm{~min} \quad \mathrm{CN}=60$ Runoff $=1.16 \mathrm{cfs} 10,483 \mathrm{cf}$

Subcatchment200S: Area 200S
Runoff Area=164,000 sf 3.49% Impervious Runoff Depth $=0.00$ " Flow Length=450' Slope=0.0050 '/' Tc=40.7 $\mathrm{min} \quad \mathrm{CN}=34$ Runoff $=0.00 \mathrm{cfs} 0 \mathrm{cf}$

Pond 202P: Isolated Wetland

Link 100L: Bordering Vegetated Wetland
Peak Elev=47.00' Storage=0 cf Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf

Inflow=1.16 cfs $10,483 \mathrm{cf}$ Primary=1.16 cfs 10,483 cf

Link 200L: 30" RCP Lot 33
Inflow=0.00 cfs 0 cf Primary $=0.00$ cfs 0 cf

> Total Runoff Area $=508,527 \mathrm{sf} \quad$ Runoff Volume $=10,483 \mathrm{cf} \quad$ Average Runoff Depth $=0.25 "$ 98.87% Pervious $=502,802 \mathrm{sf} \quad 1.13 \%$ Impervious $=5,725 \mathrm{sf}$

Summary for Subcatchment 100S: Area 100S

Runoff $=1.16$ cfs @ 12.63 hrs, Volume= $\quad 10,483 \mathrm{cf}$, Depth> 0.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

Area (sf)		CN	Description				
124,468 165,059 55,000		30	Woods, Good, HSG A				
		70	Woods, Good	od, HSG C			
		96	Gravel surfa	face, HSG A			
344,527		60	Weighted Average 100.00\% Pervious Area				
	44,527						
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		Description	
21.8	50	0.0050	0.04		Sheet Flow,		
					Woods: Light underbrush $\mathrm{n}=0.400$	$P 2=3.10$	
5.3	196	0.0150	0.61		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
5.8	474	0.0750	1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$		
32.9	720	Total					

Subcatchment 100S: Area 100S

Summary for Subcatchment 200S: Area 200S

Runoff $=0.00$ cfs @ 0.00 hrs, Volume= 0 cf, Depth= $0.00{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-Year Rainfall=3.10"

Subcatchment 200S: Area 200S

\square Runoff

Summary for Pond 202P: Isolated Wetland

Inflow Area $=$	$164,000 \mathrm{sf}$,	3.49% Impervious,	Inflow Depth $=0.00 "$	for $2-$ Year event
Inflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume=	0 cf
Outflow	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume=	0 cf , Atten= $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary	$=$	$0.00 \mathrm{cfs} @$	0.00 hrs , Volume $=$	0 cf

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 47.00' @ 0.00 hrs Surf.Area= 2,500 sf Storage $=0 \mathrm{cf}$
Flood Elev=48.00' Surf.Area= $3,300 \mathrm{sf}$ Storage $=2,900 \mathrm{cf}$
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time $=$ (not calculated: no inflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	47.00	$2,900 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
47.00	2,500	0	0
48.00	3,300	2,900	2,900

Device Routing Invert Outlet Devices
\#1 Primary $\quad 48.00^{\prime} \quad 9 . \mathbf{0}^{\prime}$ long $\times 15 . \mathbf{0}^{\prime}$ breadth Broad-Crested Rectangular Weir
Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=47.00' (Free Discharge)
L-1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Pond 202P: Isolated Wetland

Stage-Area-Storage for Pond 202P: Isolated Wetland

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.00	2,500	0	47.53	2,924	1,437
47.01	2,508	25	47.54	2,932	1,467
47.02	2,516	50	47.55	2,940	1,496
47.03	2,524	75	47.56	2,948	1,525
47.04	2,532	101	47.57	2,956	1,555
47.05	2,540	126	47.58	2,964	1,585
47.06	2,548	151	47.59	2,972	1,614
47.07	2,556	177	47.60	2,980	1,644
47.08	2,564	203	47.61	2,988	1,674
47.09	2,572	228	47.62	2,996	1,704
47.10	2,580	254	47.63	3,004	1,734
47.11	2,588	280	47.64	3,012	1,764
47.12	2,596	306	47.65	3,020	1,794
47.13	2,604	332	47.66	3,028	1,824
47.14	2,612	358	47.67	3,036	1,855
47.15	2,620	384	47.68	3,044	1,885
47.16	2,628	410	47.69	3,052	1,915
47.17	2,636	437	47.70	3,060	1,946
47.18	2,644	463	47.71	3,068	1,977
47.19	2,652	489	47.72	3,076	2,007
47.20	2,660	516	47.73	3,084	2,038
47.21	2,668	543	47.74	3,092	2,069
47.22	2,676	569	47.75	3,100	2,100
47.23	2,684	596	47.76	3,108	2,131
47.24	2,692	623	47.77	3,116	2,162
47.25	2,700	650	47.78	3,124	2,193
47.26	2,708	677	47.79	3,132	2,225
47.27	2,716	704	47.80	3,140	2,256
47.28	2,724	731	47.81	3,148	2,287
47.29	2,732	759	47.82	3,156	2,319
47.30	2,740	786	47.83	3,164	2,351
47.31	2,748	813	47.84	3,172	2,382
47.32	2,756	841	47.85	3,180	2,414
47.33	2,764	869	47.86	3,188	2,446
47.34	2,772	896	47.87	3,196	2,478
47.35	2,780	924	47.88	3,204	2,510
47.36	2,788	952	47.89	3,212	2,542
47.37	2,796	980	47.90	3,220	2,574
47.38	2,804	1,008	47.91	3,228	2,606
47.39	2,812	1,036	47.92	3,236	2,639
47.40	2,820	1,064	47.93	3,244	2,671
47.41	2,828	1,092	47.94	3,252	2,703
47.42	2,836	1,121	47.95	3,260	2,736
47.43	2,844	1,149	47.96	3,268	2,769
47.44	2,852	1,177	47.97	3,276	2,801
47.45	2,860	1,206	47.98	3,284	2,834
47.46	2,868	1,235	47.99	3,292	2,867
47.47	2,876	1,263	48.00	3,300	2,900
47.48	2,884	1,292			
47.49	2,892	1,321			
47.50	2,900	1,350			
47.51	2,908	1,379			
47.52	2,916	1,408			

Prepared by Millennium Engineering, Inc.

Summary for Link 100L: Bordering Vegetated Wetland

Inflow Area $=344,527$ sf, 0.00% Impervious, Inflow Depth >0.37 " for 2-Year event
Inflow = 1.16 cfs @ 12.63 hrs, Volume=
$10,483 \mathrm{cf}$
Primary =
1.16 cfs @ 12.63 hrs, Volume=
$10,483 \mathrm{cf}$, Atten $=0 \%, \quad$ Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 100L: Bordering Vegetated Wetland

\square Inflow
\square Primary

Prepared by Millennium Engineering, Inc.

Summary for Link 200L: 30" RCP Lot 33

Inflow Area $=164,000$ sf, 3.49% Impervious, Inflow Depth $=0.00$ " for 2-Year event
Inflow = 0.00 cfs @ 0.00 hrs , Volume=

0 cf
Primary =
0.00 cfs @ 0.00 hrs , Volume=

0 cf, Atten $=0 \%, L a g=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$
Link 200L: 30" RCP Lot 33
Hydrograph

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 100S: Area 100S
Runoff Area $=344,527$ sf 0.00% Impervious Runoff Depth >1.01 " Flow Length=720' Tc=32.9 min CN=60 Runoff=4.40 cfs $28,981 \mathrm{cf}$

Subcatchment200S: Area 200S
Runoff Area $=164,000$ sf 3.49% Impervious Runoff Depth >0.02 " Flow Length=450' Slope=0.0050 '/' Tc=40.7 min CN=34 Runoff=0.01 cfs 241 cf

Pond 202P: Isolated Wetland
Peak Elev=47.09' Storage=240 cf Inflow=0.01 cfs 241 cf Outflow=0.00 cfs 0 cf

Link 100L: Bordering Vegetated Wetland

Link 200L: 30" RCP Lot 33

Inflow=4.40 cfs $28,981 \mathrm{cf}$ Primary $=4.40$ cfs 28,981 cf

Inflow=0.00 cfs 0 cf Primary $=0.00$ cfs 0 cf

$$
\begin{array}{r}
\text { Total Runoff Area }=508,527 \mathrm{sf} \quad \text { Runoff Volume }=29,221 \mathrm{cf} \quad \text { Average Runoff Depth }=0.69 " \\
98.87 \% \text { Pervious }=502,802 \mathrm{sf} \quad 1.13 \% \text { Impervious }=5,725 \mathrm{sf}
\end{array}
$$

Summary for Subcatchment 100S: Area 100S

Runoff $=\quad 4.40$ cfs @ 12.54 hrs, Volume $=28,981 \mathrm{cf}$, Depth> 1.01"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)		CN	Description			
$\begin{array}{r} 124,468 \\ 165,059 \\ 55,000 \\ \hline \end{array}$		30	Woods, Good, HSG A			
		70 W	oods, Go	d, HSG C		
		96 G	ravel surfa	ce, HSG A		
344,527		60	Weighted Average 100.00\% Pervious Area			
	44,527					
$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
21.8	50	0.0050	0.04		Sheet Flow,	
					Woods: Light underbrush n=0.400	P2=3.10"
5.3	196	0.0150	0.61		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
5.8	474	0.0750	1.37		Shallow Concentrated Flow, Woodland $\mathrm{Kv}=5.0 \mathrm{fps}$	
32.9	720	Total				

Subcatchment 100S: Area 100S

Summary for Subcatchment 200S: Area 200S

Runoff $=\quad 0.01$ cfs @ 22.09 hrs, Volume= 241 cf, Depth> 0.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Subcatchment 200S: Area 200 S

Summary for Pond 202P: Isolated Wetland

Inflow Area =	164,000 sf,	3.49\% Imperviou	Depth > 0.02" for 10-Year event
Inflow	0.01 cfs @	22.09 hrs , Volume=	241 cf
Outflow	0.00 cfs @	0.00 hrs , Volume=	0 cf, Atten= 100\%, Lag $=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 47.09' @ 24.00 hrs Surf.Area= 2,576 sf Storage= 240 cf
Flood Elev=48.00' Surf.Area= 3,300 sf Storage $=2,900 \mathrm{cf}$
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	47.00	$2,900 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
47.00	2,500	0	0
48.00	3,300	2,900	2,900

Device Routing Invert Outlet Devices
\#1 Primary $48.00^{\prime} \quad 9 . \mathbf{0}^{\prime}$ long $\times 15 . \mathbf{0}^{\prime}$ breadth Broad-Crested Rectangular Weir
Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=47.00' (Free Discharge)
L- $_{1=\text { Broad-Crested Rectangular Weir (Controls } 0.00 \mathrm{cfs} \text {) }}$

Pond 202P: Isolated Wetland

Stage-Area-Storage for Pond 202P: Isolated Wetland

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.00	2,500	0	47.53	2,924	1,437
47.01	2,508	25	47.54	2,932	1,467
47.02	2,516	50	47.55	2,940	1,496
47.03	2,524	75	47.56	2,948	1,525
47.04	2,532	101	47.57	2,956	1,555
47.05	2,540	126	47.58	2,964	1,585
47.06	2,548	151	47.59	2,972	1,614
47.07	2,556	177	47.60	2,980	1,644
47.08	2,564	203	47.61	2,988	1,674
47.09	2,572	228	47.62	2,996	1,704
47.10	2,580	254	47.63	3,004	1,734
47.11	2,588	280	47.64	3,012	1,764
47.12	2,596	306	47.65	3,020	1,794
47.13	2,604	332	47.66	3,028	1,824
47.14	2,612	358	47.67	3,036	1,855
47.15	2,620	384	47.68	3,044	1,885
47.16	2,628	410	47.69	3,052	1,915
47.17	2,636	437	47.70	3,060	1,946
47.18	2,644	463	47.71	3,068	1,977
47.19	2,652	489	47.72	3,076	2,007
47.20	2,660	516	47.73	3,084	2,038
47.21	2,668	543	47.74	3,092	2,069
47.22	2,676	569	47.75	3,100	2,100
47.23	2,684	596	47.76	3,108	2,131
47.24	2,692	623	47.77	3,116	2,162
47.25	2,700	650	47.78	3,124	2,193
47.26	2,708	677	47.79	3,132	2,225
47.27	2,716	704	47.80	3,140	2,256
47.28	2,724	731	47.81	3,148	2,287
47.29	2,732	759	47.82	3,156	2,319
47.30	2,740	786	47.83	3,164	2,351
47.31	2,748	813	47.84	3,172	2,382
47.32	2,756	841	47.85	3,180	2,414
47.33	2,764	869	47.86	3,188	2,446
47.34	2,772	896	47.87	3,196	2,478
47.35	2,780	924	47.88	3,204	2,510
47.36	2,788	952	47.89	3,212	2,542
47.37	2,796	980	47.90	3,220	2,574
47.38	2,804	1,008	47.91	3,228	2,606
47.39	2,812	1,036	47.92	3,236	2,639
47.40	2,820	1,064	47.93	3,244	2,671
47.41	2,828	1,092	47.94	3,252	2,703
47.42	2,836	1,121	47.95	3,260	2,736
47.43	2,844	1,149	47.96	3,268	2,769
47.44	2,852	1,177	47.97	3,276	2,801
47.45	2,860	1,206	47.98	3,284	2,834
47.46	2,868	1,235	47.99	3,292	2,867
47.47	2,876	1,263	48.00	3,300	2,900
47.48	2,884	1,292			
47.49	2,892	1,321			
47.50	2,900	1,350			
47.51	2,908	1,379			
47.52	2,916	1,408			

Summary for Link 100L: Bordering Vegetated Wetland

Inflow Area $=344,527$ sf, 0.00% Impervious, Inflow Depth >1.01 " for 10-Year event
Inflow $=4.40$ cfs @ 12.54 hrs , Volume $=\quad 28,981 \mathrm{cf}$

Primary $=4.40$ cfs @ 12.54 hrs , Volume $=\quad 28,981 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$

Link 100L: Bordering Vegetated Wetland

Prepared by Millennium Engineering, Inc.

Summary for Link 200L: 30" RCP Lot 33

Inflow Area $=\quad 164,000 \mathrm{sf}$, 3.49% Impervious, Inflow Depth $=0.00$ " for 10-Year event
Inflow = 0.00 cfs @ 0.00 hrs , Volume=

0 cf
Primary = 0.00 cfs @ 0.00 hrs , Volume=

0 cf, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$
Link 200L: 30" RCP Lot 33
Hydrograph

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment100S: Area 100S Runoff Area=344,527 sf 0.00% Impervious Runoff Depth >2.24 " Flow Length=720' Tc=32.9 min CN=60 Runoff=10.83 cfs $64,224 \mathrm{cf}$

Subcatchment200S: Area 200S Runoff Area=164,000 sf 3.49% Impervious Runoff Depth>0.30" Flow Length=450' Slope=0.0050 '/' Tc=40.7 min CN=34 Runoff=0.19 cfs $4,145 \mathrm{cf}$

Pond 202P: Isolated Wetland

Link 100L: Bordering Vegetated Wetland

Link 200L: 30" RCP Lot 33
Peak Elev=48.03' Storage=2,900 cf Inflow=0.19 cfs 4,145 cf Outflow=0.10 cfs 1,247 cf

Inflow=10.83 cfs 64,224 cf Primary $=10.83$ cfs 64,224 cf

Inflow=0.10 cfs $1,247 \mathrm{cf}$ Primary $=0.10$ cfs 1,247 cf

Summary for Subcatchment 100S: Area 100S

Runoff $=10.83$ cfs @ 12.49 hrs, Volume $=64,224$ cf, Depth> 2.24"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

Subcatchment 100S: Area 100 S

Summary for Subcatchment 200S: Area 200S

Runoff $=\quad 0.19$ cfs @ 13.14 hrs, Volume $=\quad 4,145 \mathrm{cf}$, Depth> 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

Subcatchment 200S: Area 200S

Summary for Pond 202P: Isolated Wetland

Inflow Area =	164,000 sf,	3.49\% Impervious,	Inflow Depth > 0.30" for 100-Year event
Inflow	0.19 cfs @	13.14 hrs , Volume=	4,145 cf
Outflow	0.10 cfs @	18.60 hrs , Volume=	$1,247 \mathrm{cf}$, Atten= 47\%, Lag= 327.8 min
Primary	0.10 cfs @	18.60 hrs , Volume=	1,247 cf

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Peak Elev= 48.03' @ 18.60 hrs Surf.Area= 3,300 sf Storage= 2,900 cf
Flood Elev=48.00' Surf.Area= $3,300 \mathrm{sf}$ Storage $=2,900 \mathrm{cf}$
Plug-Flow detention time $=449.7 \mathrm{~min}$ calculated for $1,244 \mathrm{cf}(30 \%$ of inflow $)$
Center-of-Mass det. time $=249.9 \min (1,265.9-1,016.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	47.00^{\prime}	2,900 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
47.00	2,500	0	0
48.00	3,300	2,900	2,900

Device Routing Invert Outlet Devices
\#1 Primary $\quad 48.00^{\prime} \quad 9 . \mathbf{0}^{\prime}$ long $\times 15 . \mathbf{0}^{\prime}$ breadth Broad-Crested Rectangular Weir
Head (feet) 0.200 .400 .600 .801 .001 .201 .401 .60
Coef. (English) 2.682 .702 .702 .642 .632 .642 .642 .63
Primary OutFlow Max=0.10 cfs @ 18.60 hrs HW=48.03' (Free Discharge)
L-1=Broad-Crested Rectangular Weir (Weir Controls 0.10 cfs @ 0.43 fps)

Pond 202P: Isolated Wetland

Stage-Area-Storage for Pond 202P: Isolated Wetland

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.00	2,500	0	47.53	2,924	1,437
47.01	2,508	25	47.54	2,932	1,467
47.02	2,516	50	47.55	2,940	1,496
47.03	2,524	75	47.56	2,948	1,525
47.04	2,532	101	47.57	2,956	1,555
47.05	2,540	126	47.58	2,964	1,585
47.06	2,548	151	47.59	2,972	1,614
47.07	2,556	177	47.60	2,980	1,644
47.08	2,564	203	47.61	2,988	1,674
47.09	2,572	228	47.62	2,996	1,704
47.10	2,580	254	47.63	3,004	1,734
47.11	2,588	280	47.64	3,012	1,764
47.12	2,596	306	47.65	3,020	1,794
47.13	2,604	332	47.66	3,028	1,824
47.14	2,612	358	47.67	3,036	1,855
47.15	2,620	384	47.68	3,044	1,885
47.16	2,628	410	47.69	3,052	1,915
47.17	2,636	437	47.70	3,060	1,946
47.18	2,644	463	47.71	3,068	1,977
47.19	2,652	489	47.72	3,076	2,007
47.20	2,660	516	47.73	3,084	2,038
47.21	2,668	543	47.74	3,092	2,069
47.22	2,676	569	47.75	3,100	2,100
47.23	2,684	596	47.76	3,108	2,131
47.24	2,692	623	47.77	3,116	2,162
47.25	2,700	650	47.78	3,124	2,193
47.26	2,708	677	47.79	3,132	2,225
47.27	2,716	704	47.80	3,140	2,256
47.28	2,724	731	47.81	3,148	2,287
47.29	2,732	759	47.82	3,156	2,319
47.30	2,740	786	47.83	3,164	2,351
47.31	2,748	813	47.84	3,172	2,382
47.32	2,756	841	47.85	3,180	2,414
47.33	2,764	869	47.86	3,188	2,446
47.34	2,772	896	47.87	3,196	2,478
47.35	2,780	924	47.88	3,204	2,510
47.36	2,788	952	47.89	3,212	2,542
47.37	2,796	980	47.90	3,220	2,574
47.38	2,804	1,008	47.91	3,228	2,606
47.39	2,812	1,036	47.92	3,236	2,639
47.40	2,820	1,064	47.93	3,244	2,671
47.41	2,828	1,092	47.94	3,252	2,703
47.42	2,836	1,121	47.95	3,260	2,736
47.43	2,844	1,149	47.96	3,268	2,769
47.44	2,852	1,177	47.97	3,276	2,801
47.45	2,860	1,206	47.98	3,284	2,834
47.46	2,868	1,235	47.99	3,292	2,867
47.47	2,876	1,263	48.00	3,300	2,900
47.48	2,884	1,292	48.01	3,300	2,900
47.49	2,892	1,321	48.02	3,300	2,900
47.50	2,900	1,350	48.03	3,300	2,900
47.51	2,908	1,379			
47.52	2,916	1,408			

Summary for Link 100L: Bordering Vegetated Wetland

Inflow Area $=344,527$ sf, 0.00% Impervious, Inflow Depth >2.24 " for 100-Year event Inflow $=10.83$ cfs @ 12.49 hrs, Volume $=\quad 64,224 \mathrm{cf}$
Primary $=10.83$ cfs @ 12.49 hrs , Volume $=\quad 64,224 \mathrm{cf}$, Atten= $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 100L: Bordering Vegetated Wetland

Summary for Link 200L: 30" RCP Lot 33

Inflow Area $=\quad 164,000$ sf, 3.49% Impervious, Inflow Depth >0.09 " for 100-Year event
Inflow $=0.10$ cfs @ 18.60 hrs , Volume $=1,247 \mathrm{cf}$
Primary $=0.10$ cfs @ 18.60 hrs , Volume $=\quad 1,247 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Link 200L: 30" RCP Lot 33
Hydrograph

11.0 APPENDIX D - POST-DEVELOPMENT DRAINAGE CALCULATIONS

M183284-Proposed 2-6-23

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft)}$	CN	Description (subcatchment-numbers)
35,135	39	$>75 \%$ Grass cover, Good, HSG A (1S, 2S, 3S, 4S, $5 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{~S}, 9 \mathrm{~S}, 10 \mathrm{~S}, 11 \mathrm{~S}$, $12 \mathrm{~S})$
32,069	30	Brush, Good, HSG A (100S)
139,145	96	Gravel surface, HSG A (7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 100S)
61,675	98	Paved parking, HSG A (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S)
17,040	98	Roofs, HSG A (3.1S, 9S, 11S)
57,990	30	Woods, Good, HSG A (7S, 10S, 11S, 13S, 100S)
165,060	70	Woods, Good, HSG C (100S)
$\mathbf{5 0 8 , 1 1 4}$	$\mathbf{7 2}$	TOTAL AREA

M183284-Proposed 2-6-23
Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
343,054	HSG A	$1 \mathrm{~S}, 2 \mathrm{~S}, 3.1 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{~S}, 8 \mathrm{~S}, 9 \mathrm{~S}, 10 \mathrm{~S}, 11 \mathrm{~S}, 12 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 100 \mathrm{~S}$
0	HSG B	
165,060	HSG C	100 S
0	HSG D	
0	Other	
$\mathbf{5 0 8 , 1 1 4}$		TOTAL AREA

M183284-Proposed 2-6-23
Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Ground Covers (all nodes)						
HSG-A $(\mathrm{sq}-\mathrm{ft})$	HSG-B $(\mathrm{sq-ft})$	HSG-C $(\mathrm{sq-ft})$	HSG-D $(\mathrm{sq}-\mathrm{ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
35,135	0	0	0	0	35,135	$>75 \%$ Grass
						cover, Good
32,069	0	0	0	0	32,069	Brush, Good
139,145	0	0	0	0	139,145	Gravel surface
61,675	0	0	0	0	61,675	Paved parking
17,040	0	0	0	0	17,040	Roofs
57,990	0	165,060	0	0	223,050	Woods, Good
$\mathbf{3 4 3 , 0 5 4}$	$\mathbf{0}$	$\mathbf{1 6 5 , 0 6 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{5 0 8 , 1 1 4}$	TOTAL AREA

Time span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481$ points $\times 2$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Area 1S

Subcatchment2S: Area 2S

Subcatchment 3.1S: Area 3.1S

Subcatchment3S: Area 3S

Subcatchment4S: Area 4S

Subcatchment5S: Area 5S

Subcatchment6S: Area 6S

Subcatchment7S: Area 7S

Subcatchment8S: Area 8S

Subcatchment9S: Area 9S

Subcatchment 10S: Area 10S

Subcatchment11S: Area 11S

Subcatchment 12S: Area 12S

Subcatchment 13S: Area 13S

Subcatchment 14S: Area 14S

Subcatchment 100S: Area 100S

Runoff Area $=5,035$ sf 31.38% Impervious Runoff Depth $>0.31^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff $=0.02 \mathrm{cfs} 128 \mathrm{cf}$

Runoff Area=2,730 sf 83.15% Impervious Runoff Depth >1.91 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff=$=0.14 \mathrm{cfs} 434 \mathrm{cf}$

Runoff Area $=6,480$ sf 100.00% Impervious Runoff Depth >2.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.44 \mathrm{cfs} 1,548 \mathrm{cf}$

Runoff Area $=18,585$ sf 43.69% Impervious Runoff Depth $>0.55^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=65$ Runoff $=0.21 \mathrm{cfs} 854 \mathrm{cf}$

Runoff Area=6,150 sf 33.33% Impervious Runoff Depth >0.34 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=59$ Runoff $=0.03 \mathrm{cfs} 173 \mathrm{cf}$

Runoff Area $=15,230$ sf 87.72% Impervious Runoff Depth >2.16 " Tc=6.0 min CN=91 Runoff=0.86 cfs 2,745 cf

Runoff Area=6,675 sf 50.86% Impervious Runoff Depth $>0.72^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=69$ Runoff $=0.11 \mathrm{cfs} 402 \mathrm{cf}$

Runoff Area $=30,740$ sf 21.05% Impervious Runoff Depth >1.53 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff= $1.24 \mathrm{cfs} 3,909 \mathrm{cf}$

Runoff Area=5,625 sf 44.44% Impervious Runoff Depth >2.76 " Tc=6.0 min CN=97 Runoff=0.37 cfs $1,292 \mathrm{cf}$

Runoff Area $=14,465$ sf 70.83% Impervious Runoff Depth >2.65 " Tc=6.0 min CN=96 Runoff=0.94 cfs 3,193 cf

Runoff Area $=13,830$ sf 63.16% Impervious Runoff Depth >1.32 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=0.48 \mathrm{cfs} 1,526 \mathrm{cf}$

Runoff Area $=38,165$ sf 33.83% Impervious Runoff Depth $>1.46^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=82$ Runoff=$=1.46 \mathrm{cfs} 4,633 \mathrm{cf}$

Runoff Area $=19,480$ sf 3.08% Impervious Runoff Depth >1.91 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=0.98 \mathrm{cfs} 3,094 \mathrm{cf}$

Runoff Area $=25,775$ sf 0.00% Impervious Runoff Depth >1.83 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=1.24 \mathrm{cfs} 3,920 \mathrm{cf}$

Runoff Area $=55,000$ sf 0.00% Impervious Runoff Depth $>2.65^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=96$ Runoff $=3.58 \mathrm{cfs} 12,140 \mathrm{cf}$

Runoff Area $=244,149$ sf 0.00% Impervious Runoff Depth >0.30 " Flow Length=805' Tc=30.0 min CN=58 Runoff=0.62 cfs 6,160 cf

Pond 1: CB1

Pond 1.1: CB1.1

Pond 1P: Cultec 180HD

Pond 2: CB2

Pond 2P: Shea Leaching chambers Peak Elev=41.02' Storage=4,854 cf Inflow=5.82 cfs 19,289 cf
Peak Elev=47.66' Inflow=0.14 cfs 434 cf
12.0" Round Culvert $n=0.013 \mathrm{~L}=9.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=0.14 cfs 434 cf Outflow=1.42 cfs 19,297 cf

Pond 3: CB3

Pond 4: CB4
Peak Elev=46.29' Inflow=0.86 cfs $2,745 \mathrm{cf}$
4.0 ' $=0.0100$ '/' Outflow $=0.86 \mathrm{cfs} 2,745 \mathrm{cf}$ 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=14.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=0.86 cfs $2,745 \mathrm{cf}$

Pond 5: CB5

Pond 5.1: CB5.1

Pond 6: CB6

Pond 7: CB7

Pond 8: CB8

Pond 8.1: CB8.1

Pond 9: CB9

Pond 10: CB10

Pond 104P: Inf Area 2

Pond A: DMH 1

Pond B: DMH2
Peak Elev=47.53' Inflow=0.02 cfs 128 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=16.0^{\prime} \mathrm{S}=0.0100 \mathrm{l} /{ }^{\prime}$ Outflow=0.02 cfs 128 cf

Peak Elev=46.83' Inflow=0.21 cfs 854 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=88.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=0.21 cfs 854 cf

Peak Elev=47.88' Storage=158 cf Inflow=0.44 cfs $1,548 \mathrm{cf}$ Outflow=0.20 cfs 1,551 cf

Peak Elev=45.83' Inflow=0.03 cfs 173 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=0.03 cfs 173 cf

Peak Elev=44.61' Inflow=0.11 cfs 402 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=0.11 cfs 402 cf

Peak Elev=44.85' Inflow=0.48 cfs 1,526 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=224.0$ ' $\mathrm{S}=0.0050$ '/' Outflow=0.48 cfs 1,526 cf

Peak Elev=45.06' Inflow=1.24 cfs 3,909 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=11.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=1.24 cfs $3,909 \mathrm{cf}$

Peak Elev=45.21' Inflow=0.37 cfs 1,292 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=19.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=0.37 cfs $1,292 \mathrm{cf}$

Peak Elev=45.45' Inflow=0.94 cfs 3,193 cf 12.0" Round Culvert n=0.013 L=11.0' $\mathrm{S}=0.0100$ '//' Outflow=0.94 cfs $3,193 \mathrm{cf}$

Peak Elev=44.09' Inflow=1.94 cfs 6,159 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=118.0$ ' $\mathrm{S}=0.0050$ '/' Outflow=1.94 cfs $6,159 \mathrm{cf}$

Peak Elev=48.92' Inflow=0.98 cfs 3,094 cf 12.0" Round Culvert n=0.013 L=146.0' S=0.0068 '/' Outflow=0.98 cfs 3,094 cf

Peak Elev=48.22' Inflow=2.22 cfs 7,014 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0100$ '//' Outflow=2.22 cfs $7,014 \mathrm{cf}$

Peak Elev=47.83' Storage=4,316 cf Inflow=5.79 cfs 19,154 cf Discarded $=1.56$ cfs 19,192 cf Primary $=0.00$ cfs 0 cf Outflow=1.56 cfs 19,192 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=189.0$ ' $\mathrm{S}=0.0050$ '/' Outflow=0.36 cfs $1,416 \mathrm{cf}$

Peak Elev=45.30' Inflow=1.23 cfs 4,334 cf 12.0" Round Culvert n=0.013 L=184.0' $\mathrm{S}=0.0050$ '/' Outflow=1.23 cfs 4,334 cf

Total Runoff Area $=508,114$ sf Runoff Volume $=46,151$ cf Average Runoff Depth $=1.09$ " 84.51\% Pervious $=429,399$ sf 15.49% Impervious $=78,715$ sf

Summary for Subcatchment 1S: Area 1 S
Runoff $=0.02$ cfs @ 12.26 hrs, Volume= 128 cf, Depth> $0.31^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	1,580	98 P	Paved parking, HSG A		
	3,455	$39>$	>75\% Grass cover, Good, HSG A		
	5,035	58 V	Weighted Average		
	3,455		68.62\% Pervious Area		
	1,580		31.38\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 1S: Area 1S
Hydrograph

Summary for Subcatchment 2S: Area 2S

Runoff $=\quad 0.14$ cfs @ 12.09 hrs, Volume= 434 cf, Depth> 1.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	2,270	98 P	Paved parking, HSG A		
	460	$39>$	>75\% Gras	s cover, Go	od, HSG A
	2,730	88	Weighted Average 16.85\% Pervious Area 83.15\% Impervious Area		
	460				
	2,270				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2S: Area 2S

Summary for Subcatchment 3.1S: Area 3.1S
Runoff $=\quad 0.44$ cfs @ 12.09 hrs, Volume $=1,548 \mathrm{cf}$, Depth> 2.87"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

Area (sf) CN Description					
$\frac{6,480}{6,480}$		98	oofs, HSG		
		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description

Subcatchment 3.1S: Area 3.1S

Summary for Subcatchment 3S: Area 3S

Runoff $=\quad 0.21$ cfs @ 12.11 hrs, Volume= 854 cf , Depth> 0.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 8,120 \\ 10,465 \\ \hline \end{array}$	$\begin{array}{ll} \hline 98 & P \\ 39 & > \end{array}$	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	18,585 10,465 8,120	$65 \quad \mathrm{~V}$	Weighted Average 56.31\% Pervious Area 43.69\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$ (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 3S: Area 3S
Hydrograph

Summary for Subcatchment 4S: Area 4S

Runoff $=\quad 0.03$ cfs @ 12.16 hrs, Volume $=173 \mathrm{cf}$, Depth> 0.34"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN	Paved parking, HSG A		
	2,050	$\begin{aligned} & 98 \\ & 39 \\ & \hline \end{aligned}$			
	4,100		Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	6,150	59	Weighted Average 66.67\% Pervious Area 33.33\% Impervious Area		
	4,100				
	2,050				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 4S: Area 4S

Summary for Subcatchment 5S: Area 5S

Runoff $=0.86$ cfs @ 12.09 hrs, Volume $=\quad 2,745 \mathrm{cf}$, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	13,360	$\begin{array}{r} 98 \\ 39 \\ \hline \end{array}$			
	1,870				
	15,230	91	Weighted Average 12.28\% Pervious Area 87.72\% Impervious Area		
	1,870				
	13,360				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 5S: Area 5S
Hydrograph

Summary for Subcatchment 6S: Area 6S

Runoff $=\quad 0.11$ cfs @ 12.11 hrs, Volume= 402 cf , Depth> 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description Paved parking, HSG A		
	3,395	9839			
	3,280		Paved parking, HSG A >75\% Grass cover, Good, HSG A		
	6,675	69	Weighted Average		
	3,280		49.14\% Pervious Area		
	3,395		50.86\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{aligned} & \text { Capacity } \\ & \text { (cfs) } \end{aligned}$	Description
6.0					Direct Entry

Subcatchment 6S: Area 6S

Hydrograph

Summary for Subcatchment 7S: Area 7S
Runoff $=1.24$ cfs @ 12.09 hrs, Volume= $3,909 \mathrm{cf}$, Depth> 1.53"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	6,470	98 P	Paved parking, HSG A		
	17,620	96	Gravel surface, HSG A		
	4,150	$39>$	>75\% Grass cover, Good, HSG A		
	2,500	30	Woods, Good, HSG A		
	30,740	83 V	Weighted Average		
	24,270		78.95\% Pervious Area		
	6,470		21.05\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 7S: Area 7S

Summary for Subcatchment 8S: Area 8S

Runoff $=\quad 0.37$ cfs @ 12.09 hrs, Volume= $1,292 \mathrm{cf}$, Depth> 2.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	2,500	98 P	Paved parking, HSG A		
	3,125	96 G	Gravel surface, HSG A		
	5,625	97 W	Weighted Average		
	3,125		55.56\% Pervious Area		
	2,500		44.44\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 8S: Area 8S

Summary for Subcatchment 9S: Area 9S
Runoff $=0.94$ cfs @ 12.09 hrs, Volume= $3,193 \mathrm{cf}$, Depth> 2.65"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN	Description		
	5,280	98	Roofs, HSG A		
	4,965	98	Paved parking, HSG A		
	3,820	96	Gravel surface, HSG A		
	400	39	>75\% Grass cover, Good, HSG A		
	14,465	96	Weighted Average		
	4,220		29.17\% Pervious Area		
	10,245		70.83\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 9S: Area 9S

Summary for Subcatchment 10S: Area 10S
Runoff $=\quad 0.48$ cfs @ 12.10 hrs, Volume= $1,526 \mathrm{cf}$, Depth> 1.32"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Description		
	8,735	98 P			
	1,325	96	Gravel surface, HSG A		
	870	$39>$	>75\% Grass cover, Good, HSG A		
	2,900	30	Woods, Good, HSG A		
	13,830	80	Weighted Average		
	5,095		36.84\% Pervious Area		
	8,735		63.16\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 10S: Area 10S

Summary for Subcatchment 11S: Area 11S
Runoff $=\quad 1.46$ cfs @ 12.09 hrs, Volume $=\quad 4,633 \mathrm{cf}$, Depth> 1.46"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN D	Roofs, HSG A		
	5,280	98 R			
	7,630	98 P	Paved parking, HSG A		
	16,190	96 G	Gravel surface, HSG A		
	3,165	$39>$	$>75 \%$ Grass cover, Good, HSG A		
	5,900	30	Woods, Good, HSG A		
	38,165	82	Weighted Average		
	25,255		66.17\% Pervious Area		
	12,910		33.83\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 11S: Area 11S

\square Runoff

Summary for Subcatchment 12S: Area 12S
Runoff $=\quad 0.98$ cfs @ 12.09 hrs, Volume $=3,094 \mathrm{cf}$, Depth> 1.91"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN	Gravel surface, HSG A		
	15,960	96			
	2,920	$39>$	>75\% Grass cover, Good, HSG A		
	600	98 P	Paved parking, HSG A		
	19,480	88	Weighted Average 96.92\% Pervious Area 3.08\% Impervious Area		
	18,880				
	600				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 12S: Area 12S

Summary for Subcatchment 13S: Area 13S
Runoff $=1.24$ cfs @ 12.09 hrs, Volume $=3,920 \mathrm{cf}$, Depth> 1.83"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.10"

Area (sf)	CN	Description
22,400	96	Gravel surface, HSG A
3,375	30	Woods, Good, HSG A
25,775	87	Weighted Average
25,775		100.00\% Pervious Area
Tc Length Slope Velocity Capacity (min) (feet) Description (ft/ft) (ft/sec) (cfs)		
6.0		

Subcatchment 13S: Area $13 S$

Summary for Subcatchment 14S: Area 14S
Runoff $=3.58$ cfs @ 12.09 hrs, Volume $=12,140 \mathrm{cf}$, Depth> 2.65"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}$ Type III 24-hr 2-Year Rainfall=3.10"

	Area (sf)	CN Description			
	55,000	96 Gravel surface, HSG A			
55,000		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 14S: Area 14S

Summary for Subcatchment 100S: Area 100S

Runoff $=\quad 0.62$ cfs @ 12.63 hrs, Volume $=\quad 6,160 \mathrm{cf}$, Depth> 0.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 2-Year Rainfall=3.10"

Area (sf)	CN	Description	
3,705	96	Gravel surface, HSG A	
32,069	30	Brush, Good, HSG A	
43,315	30	Woods, Good, HSG A	
165,060	70	Woods, Good, HSG C	

Subcatchment 100S: Area 100S

Summary for Pond 1: CB1

Inflow Area $=\quad 5,035$ sf, 31.38% Impervious, Inflow Depth >0.31 " for 2-Year event

Inflow		0.02 cfs @	12.26 hrs , Volume=	128 cf	
Outflow		0.02 cfs @	12.26 hrs , Volume=	128 cf	Atten= 0\%, Lag= 0.0 min
Primary	=	0.02 cfs @	12.26 hrs, Volume=	128	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.53' @ 12.26 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.46'	12.0" Round Culvert
			$\mathrm{L}=16.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.46' / 47.30' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFIow Max=0.02 cfs @ 12.26 hrs HW=47.53' TW=45.89' (Dynamic Tailwater)
——1=Culvert (Barrel Controls 0.02 cfs @ 1.13 fps)

Pond 1: CB1

Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 1: CB1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0		
48.31	0		
48.36	0		
48.41	0		
48.46	0		
48.51	0		
48.56	0		
48.61	0		
48.66	0		
48.71	0		
48.76	0		
48.81	0		
48.86	0		
48.91	0		
48.96	0		
49.01	0		
49.06	0		
49.11	0		
49.16	0		
49.21	0		
49.26	0		
49.31	0		
49.36	0		
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0.01	0	
50.06	0		
	0		

Summary for Pond 1.1: CB1.1
Inflow Area $=\quad 18,585$ sf, 43.69% Impervious, Inflow Depth > 0.55" for 2-Year event
Inflow $=0.21 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= 854 cf
Outflow = 0.21 cfs @ 12.11 hrs , Volume $=\quad 854 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary = 854 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.83' @ 12.12 hrs
Flood Elev= 49.90'

Device	Routing	Invert	Outlet Devices
\#1	Primary	46.60'	12.0" Round Culvert
			$\mathrm{L}=88.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 46.60' / 45.72' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 12.11 hrs HW=46.82' TW=45.97' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.20 cfs @ 2.29 fps)

Pond 1.1: CB1. 1

Hydrograph

Prepared by Millennium Engineering, Inc.

Stage-Area-Storage for Pond 1.1: CB1.1

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.60	0	49.25	0
46.65	0	49.30	0
46.70	0	49.35	0
46.75	0	49.40	0
46.80	0	49.45	0
46.85	0	49.50	0
46.90	0	49.55	0
46.95	0	49.60	0
47.00	0	49.65	0
47.05	0	49.70	0
47.10	0	49.75	0
47.15	0	49.80	0
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0		
47.35	0		
47.40	0		
47.45	0		
47.50	0		
47.55	0		
47.60	0		
47.65	0		
47.70	0		
47.75	0		
47.80	0		
47.85	0		
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20			

Summary for Pond 1P: Cultec 180HD

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.88' @ 12.27 hrs Surf.Area= 830 sf Storage= 158 cf
Flood Elev= 49.44' Surf.Area= 830 sf Storage= 889 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=3.6 \mathrm{~min}(760.2-756.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1	47.90'	354 cf	Cultec C-100HD x 25 Inside \#2 Effective Size $=32.1^{1 "} \mathrm{~W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ ' $\times 1.86 \mathrm{sf} \times 5$ rows
\#2	47.40'	758 cf	$21.00^{\prime} \mathrm{W}$ x $39.50^{\prime} \mathrm{L} \times 2.71^{\prime}$ 'H Prismatoid 2,248 cf Overall -354 cf Embedded $=1,894$ cf $\times 40.0 \%$ Voids
1,111 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll} \hline 47.40^{\prime} & 8.27 \\ & \text { Con } \end{array}$	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area ductivity to Groundwater Elevation $=45.40^{\prime}$

Discarded OutFlow Max=0.20 cfs @ 12.27 hrs HW=47.87' (Free Discharge)
—1=Exfiltration (Controls 0.20 cfs)

Pond 1P: Cultec 180HD
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 1P: Cultec 180HD

$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \\ \hline \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	Storage (cubic-feet)	Elevation (feet)	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	Storage (cubic-feet)
47.40	830	0	50.05	830	1,091
47.45	830	17	50.10	830	1,108
47.50	830	33			
47.55	830	50			
47.60	830	66			
47.65	830	83			
47.70	830	100			
47.75	830	116			
47.80	830	133			
47.85	830	149			
47.90	830	166			
47.95	830	198			
48.00	830	229			
48.05	830	260			
48.10	830	290			
48.15	830	321			
48.20	830	351			
48.25	830	381			
48.30	830	411			
48.35	830	440			
48.40	830	469			
48.45	830	498			
48.50	830	526			
48.55	830	553			
48.60	830	580			
48.65	830	605			
48.70	830	630			
48.75	830	653			
48.80	830	674			
48.85	830	693			
48.90	830	710			
48.95	830	727			
49.00	830	743			
49.05	830	760			
49.10	830	776			
49.15	830	793			
49.20	830	809			
49.25	830	826			
49.30	830	843			
49.35	830	859			
49.40	830	876			
49.45	830	892			
49.50	830	909			
49.55	830	926			
49.60	830	942			
49.65	830	959			
49.70	830	975			
49.75	830	992			
49.80	830	1,009			
49.85	830	1,025			
49.90	830	1,042			
49.95	830	1,058			
50.00	830	1,075			

Summary for Pond 2: CB2

Inflow Area = $\quad 2,730$ sf, 83.15% Impervious, Inflow Depth > 1.91" for 2-Year event Inflow $=0.14$ cfs @ 12.09 hrs, Volume= 434 cf Outflow = $0.14 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 434 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 0.14 cfs @ 12.09 hrs, Volume= 434 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.66' @ 12.09 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.46'	12.0" Round Culvert
			$\mathrm{L}=9.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.46' / 47.37' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFIow Max=0.13 cfs @ 12.09 hrs HW=47.66' TW=45.97' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.13 cfs @ 1.86 fps)
Pond 2: CB2
Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 2: CB2

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0		
48.31	0		
48.36	0		
48.41	0		
48.46	0		
48.51	0		
48.56	0		
48.61	0		
48.66	0		
48.71	0		
48.76	0		
48.81	0		
48.86	0		
48.91	0		
48.96	0		
49.01	0		
49.06	0		
49.11	0		
49.16	0		
49.21	0		
49.26	0		
49.31	0		
49.36	0		
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0		
50.01	0		
	0		

Summary for Pond 2P: Shea Leaching chambers

Inflow Area =	157,230 s	45.56\% Impervious,	Inflow Depth > 1.47" for 2-Year event
Inflow	5.82 cfs @	12.09 hrs , Volume=	19,289 cf
Outflow	1.42 cfs @	12.51 hrs , Volume=	19,297 cf, Atten= 76\%, Lag= 24.8 min
Discarded	1.42 cfs @	12.51 hrs, Volume=	19,297 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 41.02' @ 12.51 hrs Surf.Area= 3,225 sf Storage $=4,854$ cf
Flood Elev=47.17' Surf.Area= 3,225 sf Storage $=19,298$ cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=23.4 \min (845.1-821.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1	39.25'	18,032 cf	96.0" W x 84.0" H Box Pipe Storage $\times 23$ Inside \#2 L= 14.0'
\#2	38.75'	1,266 cf	23,184 cf Overall - 6.0" Wall Thickness = 18,032 cf $43.00^{\prime} \mathrm{W} \times 75.00^{\prime} \mathrm{L} \times 8.17^{\prime} \mathrm{H}$ Prismatoid 26,348 cf Overall $-23,184$ cf Embedded $=3,164 \mathrm{cf} \times 40.0 \%$ Voids
		19,298 cf	Total Available Storage
Device	Routing	Invert Out	t Devices
\#1	Discarded	$38.75^{\prime} \quad 8.270$	in/hr Exfiltration over Surface area ductivity to Groundwater Elevation $=37.00^{\prime}$

Discarded OutFlow Max=1.42 cfs @ 12.51 hrs HW=41.02' (Free Discharge)
-1=Exfiltration (Controls 1.42 cfs)

Pond 2P: Shea Leaching chambers

Stage-Area-Storage for Pond 2P: Shea Leaching chambers

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \\ \text { (feet) } \end{array} \\ \hline \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
38.75	3,225	0	44.05	3,225	13,058
38.85	3,225	13	44.15	3,225	13,329
38.95	3,225	26	44.25	3,225	13,599
39.05	3,225	39	44.35	3,225	13,870
39.15	3,225	52	44.45	3,225	14,141
39.25	3,225	65	44.55	3,225	14,411
39.35	3,225	336	44.65	3,225	14,682
39.45	3,225	607	44.75	3,225	14,953
39.55	3,225	877	44.85	3,225	15,223
39.65	3,225	1,148	44.95	3,225	15,494
39.75	3,225	1,419	45.05	3,225	15,765
39.85	3,225	1,689	45.15	3,225	16,036
39.95	3,225	1,960	45.25	3,225	16,306
40.05	3,225	2,231	45.35	3,225	16,577
40.15	3,225	2,502	45.45	3,225	16,848
40.25	3,225	2,772	45.55	3,225	17,118
40.35	3,225	3,043	45.65	3,225	17,389
40.45	3,225	3,314	45.75	3,225	17,660
40.55	3,225	3,584	45.85	3,225	17,930
40.65	3,225	3,855	45.95	3,225	18,201
40.75	3,225	4,126	46.05	3,225	18,472
40.85	3,225	4,396	46.15	3,225	18,742
40.95	3,225	4,667	46.25	3,225	19,013
41.05	3,225	4,938	46.35	3,225	19,026
41.15	3,225	5,208	46.45	3,225	19,039
41.25	3,225	5,479	46.55	3,225	19,052
41.35	3,225	5,750	46.65	3,225	19,065
41.45	3,225	6,020	46.75	3,225	19,078
41.55	3,225	6,291	46.85	3,225	19,207
41.65	3,225	6,562	46.95	3,225	19,298
41.75	3,225	6,832	47.05	3,225	19,298
41.85	3,225	7,103	47.15	3,225	19,298
41.95	3,225	7,374			
42.05	3,225	7,644			
42.15	3,225	7,915			
42.25	3,225	8,186			
42.35	3,225	8,456			
42.45	3,225	8,727			
42.55	3,225	8,998			
42.65	3,225	9,269			
42.75	3,225	9,539			
42.85	3,225	9,810			
42.95	3,225	10,081			
43.05	3,225	10,351			
43.15	3,225	10,622			
43.25	3,225	10,893			
43.35	3,225	11,163			
43.45	3,225	11,434			
43.55	3,225	11,705			
43.65	3,225	11,975			
43.75	3,225	12,246			
43.85	3,225	12,517			
43.95	3,225	12,787			

Summary for Pond 3: CB3

Inflow Area =	6,150	33.33\% Impervious,	Depth > 0.34" for 2-Year event
Inflow	0.03 cfs @	12.16 hrs , Volume=	173 cf
Outflow	0.03 cfs @	12.16 hrs , Volume=	173 cf , Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	0.03 cfs @	12.16 hrs , Volume=	173 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.83' @ 12.16 hrs
Flood Elev= 49.15'

Device	Routing	Invert	Outlet Devices
\#1	Primary	45.75'	12.0" Round Culvert
			$\mathrm{L}=20.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 45.75' / 45.55' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 0.79 sf

Primary OutFlow Max=0.03 cfs @ 12.16 hrs HW=45.83' TW=45.20' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.03 cfs @ 1.28 fps)
Pond 3: CB3
Hydrograph

Prepared by Millennium Engineering, Inc.

Stage-Area-Storage for Pond 3: CB3

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.75	0	48.40	0
45.80	0	48.45	0
45.85	0	48.50	0
45.90	0	48.55	0
45.95	0	48.60	0
46.00	0	48.65	0
46.05	0	48.70	0
46.10	0	48.75	0
46.15	0	48.80	0
46.20	0	48.85	0
46.25	0	48.90	0
46.30	0	48.95	0
46.35	0	49.00	0
46.40	0	49.05	0
46.45	0	49.10	0
46.50	0	49.15	0
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		
47.05	0		
47.10	0		
47.15	0		
47.20	0		
47.25	0		
47.30	0		
47.35	0		
47.40	0		
47.45	0		
47.50	0		
47.55	0		
47.60	0		
47.65	0		
47.70	0		
47.75	0		
47.80	0		
47.85	0		
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		

Summary for Pond 4: CB4

Inflow Area $=$	15,230 sf, 87.72% Impervious,	Inflow Depth $>2.16 "$	for $2-$ Year event
Inflow	$=$	$0.86 \mathrm{cfs} @$	12.09 hrs , Volume=
Outflow	$=$	$0.86 \mathrm{cfs} @$	12.09 hrs , Volume=
Primary	$=$	$0.86 \mathrm{cfs} @$	12.09 hrs , Volume $=$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.29' @ 12.09 hrs
Flood Elev= 49.16'

Device	Routing	Invert	Outlet Devices
\#1	Primary	45.76'	12.0" Round Culvert
			$\mathrm{L}=14.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 45.76' / 45.62' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFlow Max=0.84 cfs @ 12.09 hrs HW=46.28' TW=45.28' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 0.84 cfs @ 2.92 fps)
Pond 4: CB4
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 4: CB4

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.76	0	48.41	0
45.81	0	48.46	0
45.86	0	48.51	0
45.91	0	48.56	0
45.96	0	48.61	0
46.01	0	48.66	0
46.06	0	48.71	0
46.11	0	48.76	0
46.16	0	48.81	0
46.21	0	48.86	0
46.26	0	48.91	0
46.31	0	48.96	0
46.36	0	49.01	0
46.41	0	49.06	0
46.46	0	49.11	0
46.51	0	49.16	0
46.56	0		
46.61	0		
46.66	0		
46.71	0		
46.76	0		
46.81	0		
46.86	0		
46.91	0		
46.96	0		
47.01	0		
47.06	0		
47.11	0		
47.16	0		
47.21	0		
47.26	0		
47.31	0		
47.36	0		
47.41	0		
47.46	0		
47.51	0		
47.56	0		
47.61	0		
47.66	0		
47.71	0		
47.76	0		
47.81	0		
47.86	0		
47.91	0		
47.96	0		
48.01	0		
48.06	0		
48.11	0		
48.16	0		
48.21	0		
48.26	0		
48.31	0		
48.36	0		

Summary for Pond 5: CB5

Inflow Area $=\quad 6,675$ sf, 50.86% Impervious, Inflow Depth > 0.72" for 2-Year event
Inflow $=0.11$ cfs @ 12.11 hrs, Volume= 402 cf
Outflow = 0.11 cfs @ 12.11 hrs , Volume $=\quad 402 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary =
0.11 cfs @ 12.11 hrs, Volume=

402 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.61' @ 12.11 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.40^{\prime}	$12.0 "$ Round Culvert
		$\mathrm{L=20.0}^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $44.40^{\prime} / 44.20^{\prime} \mathrm{S}=0.0100^{\prime} / \mathrm{Cl}^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.10 cfs @ 12.11 hrs HW=44.61' TW=44.51' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 0.10 cfs @ 1.27 fps)
Pond 5: CB5
Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 5: CB5

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.40	0	47.05	0
44.45	0	47.10	0
44.50	0	47.15	0
44.55	0	47.20	0
44.60	0	47.25	0
44.65	0	47.30	0
44.70	0	47.35	0
44.75	0	47.40	0
44.80	0	47.45	0
44.85	0	47.50	0
44.90	0	47.55	0
44.95	0	47.60	0
45.00	0	47.65	0
45.05	0	47.70	0
45.10	0	47.75	0
45.15	0	47.80	0
45.20	0		
45.25	0		
45.30	0		
45.35	0		
45.40	0		
45.45	0		
45.50	0		
45.55	0		
45.60	0		
45.65	0		
45.70	0		
45.75	0		
45.80	0		
45.85	0		
45.90	0		
45.95	0		
46.00	0		
46.05	0		
46.10	0		
46.15	0		
46.20	0		
46.25	0		
46.30	0		
46.35	0		
46.40	0		
46.45	0		
46.50	0		
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		

Summary for Pond 5.1: CB5.1

Inflow Area =	13,830 sf,	63.16\% Impervious,	Inflow Depth > 1.32" for 2-Year event
Inflow	0.48 cfs @	12.10 hrs , Volume=	1,526 cf
Outflow	0.48 cfs @	12.10 hrs , Volume=	$1,526 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Primary	0.48 cfs @	12.10 hrs , Volume=	1,526 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.85' @ 12.10 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.40^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=224.0^{\prime} \mathrm{CPP}$, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $=44.40^{\prime} / 43.28^{\prime} \mathrm{S}=0.00500^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.47 cfs @ 12.10 hrs HW=44.85' TW=44.08' (Dynamic Tailwater)
\&-1=Culvert (Outlet Controls 0.47 cfs @ 2.05 fps)
Pond 5.1: CB5. 1
Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 5.1: CB5.1

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
44.40	0	47.05	0
44.45	0	47.10	0
44.50	0	47.15	0
44.55	0	47.20	0
44.60	0	47.25	0
44.65	0	47.30	0
44.70	0	47.35	0
44.75	0	47.40	0
44.80	0	47.45	0
44.85	0	47.50	0
44.90	0	47.55	0
44.95	0	47.60	0
45.00	0	47.65	0
45.05	0	47.70	0
45.10	0	47.75	0
45.15	0	47.80	0
45.20	0		
45.25	0		
45.30	0		
45.35	0		
45.40	0		
45.45	0		
45.50	0		
45.55	0		
45.60	0		
45.65	0		
45.70	0		
45.75	0		
45.80	0		
45.85	0		
45.90	0		
45.95	0		
46.00	0		
46.05	0		
46.10	0		
46.15	0		
46.20	0		
46.25	0		
46.30	0		
46.35	0		
46.40	0		
46.45	0		
46.50	0		
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		

Summary for Pond 6: CB6

Inflow Area $=\quad 30,740$ sf, 21.05% Impervious, Inflow Depth >1.53 " for 2-Year event
Inflow $=1.24$ cfs @ 12.09 hrs, Volume= $3,909 \mathrm{cf}$
Outflow = $1.24 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 3,909 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary $=1.24$ cfs @ 12.09 hrs, Volume $=\quad 3,909 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.06' @ 12.09 hrs
Flood Elev= 47.79'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.39'	12.0" Round Culvert
			$\mathrm{L}=11.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.39' / 44.28' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFIow Max=1.22 cfs @ 12.09 hrs HW=45.06' TW=44.52' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 1.22 cfs @ 3.11 fps)
Pond 6: CB6
Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 6: CB6

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.39	0	47.04	0
44.44	0	47.09	0
44.49	0	47.14	0
44.54	0	47.19	0
44.59	0	47.24	0
44.64	0	47.29	0
44.69	0	47.34	0
44.74	0	47.39	0
44.79	0	47.44	0
44.84	0	47.49	0
44.89	0	47.54	0
44.94	0	47.59	0
44.99	0	47.64	0
45.04	0	47.69	0
45.09	0	47.74	0
45.14	0	47.79	0
45.19	0		
45.24	0		
45.29	0		
45.34	0		
45.39	0		
45.44	0		
45.49	0		
45.54	0		
45.59	0		
45.64	0		
45.69	0		
45.74	0		
45.79	0		
45.84	0		
45.89	0		
45.94	0		
45.99	0		
46.04	0		
46.09	0		
46.14	0		
46.19	0		
46.24	0		
46.29	0		
46.34	0		
46.39	0		
46.44	0		
46.49	0		
46.54	0		
46.59	0		
46.64	0		
46.69	0		
46.74	0		
46.79	0		
46.84	0		
46.89	0.94		
46.99			

Summary for Pond 7: CB7

Inflow Area = $\quad 5,625$ sf, 44.44% Impervious, Inflow Depth > 2.76" for 2-Year event
Inflow $=0.37$ cfs @ 12.09 hrs, Volume $=1,292 \mathrm{cf}$
Outflow $=0.37$ cfs @ 12.09 hrs , Volume $=1,292 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
0.37 cfs @ 12.09 hrs, Volume=

1,292 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.21' @ 12.09 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=19.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.69' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFIow Max=0.36 cfs @ 12.09 hrs HW=45.20' TW=44.08' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.36 cfs @ 2.50 fps)
Pond 7: CB7
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 7: CB7

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0		
45.73	0		
45.78	0		
45.83	0		
45.88	0		
45.93	0		
45.98	0		
46.03	0		
46.08	0		
46.13	0		
46.18	0		
46.23	0		
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48			

Summary for Pond 8: CB8

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.45' @ 12.09 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=11.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.77' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFIow Max=0.92 cfs @ 12.09 hrs HW=45.44' TW=44.08' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.92 cfs @ 2.91 fps)
Pond 8: CB8
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 8: CB8

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0		
45.73	0		
45.78	0		
45.83	0		
45.88	0		
45.93	0		
45.98	0		
46.03	0		
46.08	0		
46.13	0		
46.18	0		
46.23	0		
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48			
	0		

Summary for Pond 8.1: CB8.1
Inflow Area = 51,995 sf, 41.63% Impervious, Inflow Depth > 1.42" for 2-Year event
Inflow =
Outflow = 1.94 cfs @ 12.10 hrs, Volume=

6,159 cf
Primary =
1.94 cfs @ 12.10 hrs , Volume=
$6,159 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
1.94 cfs @ 12.10 hrs, Volume=

6,159 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.09' @ 12.10 hrs
Flood Elev= 48.20'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	43.18^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=118.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $43.18^{\prime} / 42.59^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=1.92 cfs @ 12.10 hrs HW=44.08' TW=43.22' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 1.92 cfs @ 3.41 fps)
Pond 8.1: CB8.1
Hydrograph

Stage-Area-Storage for Pond 8.1: CB8.1

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
43.18	0	45.30	0	47.42	0
43.22	0	45.34	0	47.46	0
43.26	0	45.38	0	47.50	0
43.30	0	45.42	0	47.54	0
43.34	0	45.46	0	47.58	0
43.38	0	45.50	0	47.62	0
43.42	0	45.54	0	47.66	0
43.46	0	45.58	0	47.70	0
43.50	0	45.62	0	47.74	0
43.54	0	45.66	0	47.78	0
43.58	0	45.70	0	47.82	0
43.62	0	45.74	0	47.86	0
43.66	0	45.78	0	47.90	0
43.70	0	45.82	0	47.94	0
43.74	0	45.86	0	47.98	0
43.78	0	45.90	0	48.02	0
43.82	0	45.94	0	48.06	0
43.86	0	45.98	0	48.10	0
43.90	0	46.02	0	48.14	0
43.94	0	46.06	0	48.18	0
43.98	0	46.10	0		
44.02	0	46.14	0		
44.06	0	46.18	0		
44.10	0	46.22	0		
44.14	0	46.26	0		
44.18	0	46.30	0		
44.22	0	46.34	0		
44.26	0	46.38	0		
44.30	0	46.42	0		
44.34	0	46.46	0		
44.38	0	46.50	0		
44.42	0	46.54	0		
44.46	0	46.58	0		
44.50	0	46.62	0		
44.54	0	46.66	0		
44.58	0	46.70	0		
44.62	0	46.74	0		
44.66	0	46.78	0		
44.70	0	46.82	0		
44.74	0	46.86	0		
44.78	0	46.90	0		
44.82	0	46.94	0		
44.86	0	46.98	0		
44.90	0	47.02	0		
44.94	0	47.06	0		
44.98	0	47.10	0		
45.02	0	47.14	0		
45.06	0	47.18	0		
45.10	0	47.22	0		
45.14	0	47.26	0		
45.18	0	47.30	0		
45.22	0	47.34	0		
45.26	0	47.38	0		

Summary for Pond 9: CB9

Inflow Area =	19,480 sf,	3.08\% Impervious,	Inflow Depth > 1.91" for 2-Year event
Inflow	0.98 cfs @	12.09 hrs , Volume=	3,094 cf
Outflow	0.98 cfs @	12.09 hrs , Volume=	$3,094 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	0.98 cfs @	12.09 hrs , Volume=	3,094 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.92' @ 12.10 hrs
Flood Elev= 50.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	48.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=146.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert $=48.30^{\prime} / 47.30^{\prime} \quad \mathrm{S}=0.0068^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.93 cfs @ 12.09 hrs HW=48.91' TW=48.20' (Dynamic Tailwater)
亡-1=Culvert (Outlet Controls 0.93 cfs @ 2.65 fps)
Pond 9: CB9

Stage-Area-Storage for Pond 9: CB9

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
48.30	0	49.36	0	50.42	0
48.32	0	49.38	0	50.44	0
48.34	0	49.40	0	50.46	0
48.36	0	49.42	0	50.48	0
48.38	0	49.44	0	50.50	0
48.40	0	49.46	0	50.52	0
48.42	0	49.48	0	50.54	0
48.44	0	49.50	0	50.56	0
48.46	0	49.52	0	50.58	0
48.48	0	49.54	0	50.60	0
48.50	0	49.56	0	50.62	0
48.52	0	49.58	0	50.64	0
48.54	0	49.60	0	50.66	0
48.56	0	49.62	0	50.68	0
48.58	0	49.64	0	50.70	0
48.60	0	49.66	0	50.72	0
48.62	0	49.68	0	50.74	0
48.64	0	49.70	0	50.76	0
48.66	0	49.72	0	50.78	0
48.68	0	49.74	0	50.80	0
48.70	0	49.76	0		
48.72	0	49.78	0		
48.74	0	49.80	0		
48.76	0	49.82	0		
48.78	0	49.84	0		
48.80	0	49.86	0		
48.82	0	49.88	0		
48.84	0	49.90	0		
48.86	0	49.92	0		
48.88	0	49.94	0		
48.90	0	49.96	0		
48.92	0	49.98	0		
48.94	0	50.00	0		
48.96	0	50.02	0		
48.98	0	50.04	0		
49.00	0	50.06	0		
49.02	0	50.08	0		
49.04	0	50.10	0		
49.06	0	50.12	0		
49.08	0	50.14	0		
49.10	0	50.16	0		
49.12	0	50.18	0		
49.14	0	50.20	0		
49.16	0	50.22	0		
49.18	0	50.24	0		
49.20	0	50.26	0		
49.22	0	50.28	0		
49.24	0	50.30	0		
49.26	0	50.32	0		
49.28	0	50.34	0		
49.30	0	50.36	0		
49.32	0	50.38	0		
49.34	0	50.40	0		

Summary for Pond 10: CB10

Inflow Area $=\quad 45,255$ sf, 1.33% Impervious, Inflow Depth > 1.86" for 2-Year event
Inflow $=2.22$ cfs @ 12.09 hrs , Volume $=\quad 7,014 \mathrm{cf}$
Outflow = 2.22 cfs @ 12.09 hrs , Volume= $\quad 7,014 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 2.22$ cfs @ 12.09 hrs, Volume $=\quad 7,014$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.22' @ 12.09 hrs
Flood Elev= 50.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.20'	12.0" Round Culvert
			$\mathrm{L}=20.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.20' / 47.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.17 cfs @ 12.09 hrs HW=48.21' TW=47.84' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 2.17 cfs @ 3.42 fps)

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 10: CB10

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0	49.95	0
47.35	0	50.00	0
47.40	0	50.05	0
47.45	0	50.10	0
47.50	0	50.15	0
47.55	0	50.20	0
47.60	0	50.25	0
47.65	0	50.30	0
47.70	0	50.35	0
47.75	0	50.40	0
47.80	0	50.45	0
47.85	0	50.50	0
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20	0		
49.25	0		
49.30	0		
49.35	0		
49.40	0		
49.45	0		
49.50	0		
49.55	0		
49.60	0		
49.65	0		
49.70	0.75		
49.80	0		

Summary for Pond 104P: Inf Area 2

Inflow Area =	100,255 sf,	0.60\% Impervious,	Inflow Depth > 2.29" for 2-Year event
Inflow	5.79 cfs @	12.09 hrs , Volume=	19,154 cf
Outflow	1.56 cfs @	12.45 hrs , Volume=	19,192 cf, Atten= 73\%, Lag= 21.8 min
Discarded	1.56 cfs @	12.45 hrs , Volume=	19,192 cf
Primary	0.00 cfs @	0.00 hrs , Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev=47.83' @ 12.45 hrs Surf.Area= 4,886 sf Storage $=4,316$ cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= $16.2 \min (806.6-790.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	46.50'	4,360 cf	$44.25^{\prime} \mathrm{W} \times 110.42$ 'L x 3.50 'H Field A 17,101 cf Overall $-6,202$ cf Embedded $=10,899$ cf $\times 40.0 \%$ Voids
\#2A	47.00'	6,202 cf	ADS_StormTech SC-740 +Cap x 135 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0$ " $\mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0$ "W x $30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap 135 Chambers in 9 Rows

10,561 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	46.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=44.50$
\#2	Primary	46.50'	12.0" Round Culvert
			$\mathrm{L}=50.0$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 46.50' / 44.00' S=0.0500 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	49.20'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .00
			Coef. (English) 2.802 .923 .083 .303 .32
\#4	Device 2	48.20'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$

Discarded OutFlow Max=1.56 cfs @ 12.45 hrs HW=47.83' (Free Discharge)
———Exfiltration (Controls 1.56 cfs)
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=46.50' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Controls 0.00 cfs)

- $3=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)
-4=Orifice/Grate (Controls 0.00 cfs)

Pond 104P: Inf Area 2 - Chamber Wizard Field A
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

15 Chambers/Row x 7.12' Long +0.81' Cap Length $\times 2$ = 108.42' Row Length +12.0" End Stone $\times 2=$ 110.42' Base Length

9 Rows x 51.0" Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone x $2=44.25^{\prime}$ Base Width
6.0 " Base +30.0 " Chamber Height +6.0 " Cover $=3.50$ Field Height

135 Chambers $\times 45.9$ cf $=6,201.9$ cf Chamber Storage
17,100.8 cf Field $-6,201.9$ cf Chambers $=10,898.9$ cf Stone $\times 40.0 \%$ Voids $=4,359.6$ cf Stone Storage
Chamber Storage + Stone Storage $=10,561.5 \mathrm{cf}=0.242$ af
Overall Storage Efficiency $=61.8 \%$
Overall System Size $=110.42^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
135 Chambers
633.4 cy Field
403.7 cy Stone

Pond 104P: Inf Area 2
Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 104P: Inf Area 2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
46.50	4,886	0	49.15	4,886	8,797
46.55	4,886	98	49.20	4,886	8,927
46.60	4,886	195	49.25	4,886	9,050
46.65	4,886	293	49.30	4,886	9,167
46.70	4,886	391	49.35	4,886	9,276
46.75	4,886	489	49.40	4,886	9,382
46.80	4,886	586	49.45	4,886	9,485
46.85	4,886	684	49.50	4,886	9,584
46.90	4,886	782	49.55	4,886	9,682
46.95	4,886	879	49.60	4,886	9,780
47.00	4,886	977	49.65	4,886	9,877
47.05	4,886	1,182	49.70	4,886	9,975
47.10	4,886	1,387	49.75	4,886	10,073
47.15	4,886	1,591	49.80	4,886	10,171
47.20	4,886	1,795	49.85	4,886	10,268
47.25	4,886	1,999	49.90	4,886	10,366
47.30	4,886	2,202	49.95	4,886	10,464
47.35	4,886	2,404	50.00	4,886	10,561
47.40	4,886	2,605			
47.45	4,886	2,805			
47.50	4,886	3,005			
47.55	4,886	3,204			
47.60	4,886	3,402			
47.65	4,886	3,599			
47.70	4,886	3,795			
47.75	4,886	3,990			
47.80	4,886	4,184			
47.85	4,886	4,376			
47.90	4,886	4,568			
47.95	4,886	4,759			
48.00	4,886	4,948			
48.05	4,886	5,136			
48.10	4,886	5,323			
48.15	4,886	5,509			
48.20	4,886	5,692			
48.25	4,886	5,875			
48.30	4,886	6,056			
48.35	4,886	6,235			
48.40	4,886	6,413			
48.45	4,886	6,588			
48.50	4,886	6,762			
48.55	4,886	6,935			
48.60	4,886	7,105			
48.65	4,886	7,273			
48.70	4,886	7,438			
48.75	4,886	7,601			
48.80	4,886	7,761			
48.85	4,886	7,919			
48.90	4,886	8,074			
48.95	4,886	8,226			
49.00	4,886	8,374			
49.05	4,886	8,519			
49.10	4,886	8,660			

Summary for Pond A: DMH 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.98' @ 12.11 hrs
Flood Elev= 51.37'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	45.60^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=189.0}$ ' CPP, square edge headwall, Ke= 0.500	
		Inlet / Outlet Invert= $45.60^{\prime} / 44.66^{\prime} \mathrm{S}=0.00500^{\prime} / \mathrm{I}^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.34 cfs @ 12.11 hrs HW=45.97' TW=45.29' (Dynamic Tailwater)
\&-1=Culvert (Outlet Controls 0.34 cfs @ 1.91 fps)

Pond A: DMH 1

Hydrograph

Stage-Area-Storage for Pond A: DMH 1

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.60	0	47.72	0	49.84	0
45.64	0	47.76	0	49.88	0
45.68	0	47.80	0	49.92	0
45.72	0	47.84	0	49.96	0
45.76	0	47.88	0	50.00	0
45.80	0	47.92	0	50.04	0
45.84	0	47.96	0	50.08	0
45.88	0	48.00	0	50.12	0
45.92	0	48.04	0	50.16	0
45.96	0	48.08	0	50.20	0
46.00	0	48.12	0	50.24	0
46.04	0	48.16	0	50.28	0
46.08	0	48.20	0	50.32	0
46.12	0	48.24	0	50.36	0
46.16	0	48.28	0	50.40	0
46.20	0	48.32	0	50.44	0
46.24	0	48.36	0	50.48	0
46.28	0	48.40	0	50.52	0
46.32	0	48.44	0	50.56	0
46.36	0	48.48	0	50.60	0
46.40	0	48.52	0	50.64	0
46.44	0	48.56	0	50.68	0
46.48	0	48.60	0	50.72	0
46.52	0	48.64	0	50.76	0
46.56	0	48.68	0	50.80	0
46.60	0	48.72	0	50.84	0
46.64	0	48.76	0	50.88	0
46.68	0	48.80	0	50.92	0
46.72	0	48.84	0	50.96	0
46.76	0	48.88	0	51.00	0
46.80	0	48.92	0	51.04	0
46.84	0	48.96	0	51.08	0
46.88	0	49.00	0	51.12	0
46.92	0	49.04	0	51.16	0
46.96	0	49.08	0	51.20	0
47.00	0	49.12	0	51.24	0
47.04	0	49.16	0	51.28	0
47.08	0	49.20	0	51.32	0
47.12	0	49.24	0	51.36	0
47.16	0	49.28	0		
47.20	0	49.32	0		
47.24	0	49.36	0		
47.28	0	49.40	0		
47.32	0	49.44	0		
47.36	0	49.48	0		
47.40	0	49.52	0		
47.44	0	49.56	0		
47.48	0	49.60	0		
47.52	0	49.64	0		
47.56	0	49.68	0		
47.60	0	49.72	0		
47.64	0	49.76	0		
47.68	0	49.80	0		

Summary for Pond B: DMH2

Inflow Area = $\quad 47,730$ sf, 57.36% Impervious, Inflow Depth > 1.09" for 2-Year event Inflow = 1.23 cfs @ 12.10 hrs, Volume= 4,334 cf
Outflow = $1.23 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=\quad 4,334 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary =
1.23 cfs @ 12.10 hrs, Volume=

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.30' @ 12.10 hrs
Flood Elev= 49.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$44.56 '$	$12.0^{\prime \prime}$ Round Culvert
		$L=184.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $44.56^{\prime} / 43.64^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=1.19 cfs @ 12.10 hrs HW=45.29' TW=44.52' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.19 cfs @ 2.70 fps)

Pond B: DMH2

Prepared by Millennium Engineering, Inc.

Stage-Area-Storage for Pond B: DMH2

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.56	0	47.21	0
44.61	0	47.26	0
44.66	0	47.31	0
44.71	0	47.36	0
44.76	0	47.41	0
44.81	0	47.46	0
44.86	0	47.51	0
44.91	0	47.56	0
44.96	0	47.61	0
45.01	0	47.66	0
45.06	0	47.71	0
45.11	0	47.76	0
45.16	0	47.81	0
45.21	0	47.86	0
45.26	0	47.91	0
45.31	0	47.96	0
45.36	0	48.01	0
45.41	0	48.06	0
45.46	0	48.11	0
45.51	0	48.16	0
45.56	0	48.21	0
45.61	0	48.26	0
45.66	0	48.31	0
45.71	0	48.36	0
45.76	0	48.41	0
45.81	0	48.46	0
45.86	0	48.51	0
45.91	0	48.56	0
45.96	0	48.61	0
46.01	0	48.66	0
46.06	0	48.71	0
46.11	0	48.76	0
46.16	0	48.81	0
46.21	0	48.86	0
46.26	0	48.91	0
46.31	0	48.96	0
46.36	0	49.01	0
46.41	0	49.06	0
46.46	0	49.11	0
46.51	0	49.16	0
46.56	0	49.21	0
46.61	0	49.26	0
46.66	0	49.31	0
46.71	0	49.36	0
46.76	0	49.41	0
46.81	0	49.46	0
46.86	0		
46.91	0		
46.96	0		
47.01	0		
47.06	0		
47.11	0		
47.16	0		

Summary for Pond C: DMH3
Inflow Area = 85,145 sf, 43.74\% Impervious, Inflow Depth > 1.22" for 2-Year event
Inflow $=2.57$ cfs @ 12.10 hrs , Volume= $8,646 \mathrm{cf}$
Outflow = 2.57 cfs @ 12.10 hrs , Volume $=\quad 8,646 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary =
2.57 cfs @ 12.10 hrs, Volume=

8,646 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.53' @ 12.10 hrs
Flood Elev= 48.17'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$43.54 '$	$18.0^{\prime \prime}$ Round Culvert
		$L=97.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=43.54^{\prime} / 43.05^{\prime} \quad \mathrm{S}=0.0051^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=2.48 cfs @ 12.10 hrs HW=44.52' TW=44.09' (Dynamic Tailwater)
L-1=Culvert (Outlet Controls 2.48 cfs @ 2.88 fps)

Pond C: DMH3

Hydrograph

\square Inflow
\square Primary

Prepared by Millennium Engineering, Inc.

Stage-Area-Storage for Pond C: DMH3

$\begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	Storage (cubic-feet)
43.54	0	46.19	0
43.59	0	46.24	0
43.64	0	46.29	0
43.69	0	46.34	0
43.74	0	46.39	0
43.79	0	46.44	0
43.84	0	46.49	0
43.89	0	46.54	0
43.94	0	46.59	0
43.99	0	46.64	0
44.04	0	46.69	0
44.09	0	46.74	0
44.14	0	46.79	0
44.19	0	46.84	0
44.24	0	46.89	0
44.29	0	46.94	0
44.34	0	46.99	0
44.39	0	47.04	0
44.44	0	47.09	0
44.49	0	47.14	0
44.54	0	47.19	0
44.59	0	47.24	0
44.64	0	47.29	0
44.69	0	47.34	0
44.74	0	47.39	0
44.79	0	47.44	0
44.84	0	47.49	0
44.89	0	47.54	0
44.94	0	47.59	0
44.99	0	47.64	0
45.04	0	47.69	0
45.09	0	47.74	0
45.14	0	47.79	0
45.19	0	47.84	0
45.24	0	47.89	0
45.29	0	47.94	0
45.34	0	47.99	0
45.39	0	48.04	0
45.44	0	48.09	0
45.49	0	48.14	0
45.54	0		
45.59	0		
45.64	0		
45.69	0		
45.74	0		
45.79	0		
45.84	0		
45.89	0		
45.94	0		
45.99	0		
46.04	0		
46.09	0		
46.14	0		

Summary for Pond D: DMH4

Inflow Area = 105,235 sf, 47.50% Impervious, Inflow Depth > 1.50" for 2-Year event
Inflow $=3.88$ cfs @ 12.09 hrs , Volume $=13,130 \mathrm{cf}$
Outflow = $3.88 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=13,130 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min

Primary $=3.88$ cfs @ 12.09 hrs, Volume $=13,130 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.10' @ 12.10 hrs
Flood Elev= 48.47'

Device	Routing	Invert	Outlet Devices
\#1	Primary	42.95'	18.0" Round Culvert
			$\mathrm{L}=165.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 42.95' / 42.13' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.78 cfs @ 12.09 hrs HW=44.09' TW=43.22' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 3.78 cfs @ 3.64 fps)

Pond D: DMH4

Stage-Area-Storage for Pond D: DMH4

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
42.95	0	45.07	0	47.19	0
42.99	0	45.11	0	47.23	0
43.03	0	45.15	0	47.27	0
43.07	0	45.19	0	47.31	0
43.11	0	45.23	0	47.35	0
43.15	0	45.27	0	47.39	0
43.19	0	45.31	0	47.43	0
43.23	0	45.35	0	47.47	0
43.27	0	45.39	0	47.51	0
43.31	0	45.43	0	47.55	0
43.35	0	45.47	0	47.59	0
43.39	0	45.51	0	47.63	0
43.43	0	45.55	0	47.67	0
43.47	0	45.59	0	47.71	0
43.51	0	45.63	0	47.75	0
43.55	0	45.67	0	47.79	0
43.59	0	45.71	0	47.83	0
43.63	0	45.75	0	47.87	0
43.67	0	45.79	0	47.91	0
43.71	0	45.83	0	47.95	0
43.75	0	45.87	0	47.99	0
43.79	0	45.91	0	48.03	0
43.83	0	45.95	0	48.07	0
43.87	0	45.99	0	48.11	0
43.91	0	46.03	0	48.15	0
43.95	0	46.07	0	48.19	0
43.99	0	46.11	0	48.23	0
44.03	0	46.15	0	48.27	0
44.07	0	46.19	0	48.31	0
44.11	0	46.23	0	48.35	0
44.15	0	46.27	0	48.39	0
44.19	0	46.31	0	48.43	0
44.23	0	46.35	0	48.47	0
44.27	0	46.39	0		
44.31	0	46.43	0		
44.35	0	46.47	0		
44.39	0	46.51	0		
44.43	0	46.55	0		
44.47	0	46.59	0		
44.51	0	46.63	0		
44.55	0	46.67	0		
44.59	0	46.71	0		
44.63	0	46.75	0		
44.67	0	46.79	0		
44.71	0	46.83	0		
44.75	0	46.87	0		
44.79	0	46.91	0		
44.83	0	46.95	0		
44.87	0	46.99	0		
44.91	0	47.03	0		
44.95	0	47.07	0		
44.99	0	47.11	0		
45.03	0	47.15	0		

Summary for Pond E: DMH5

Inflow Area = $\quad 157,230$ sf, 45.56% Impervious, Inflow Depth > 1.47" for 2-Year event Inflow $=5.82$ cfs @ 12.09 hrs, Volume $=19,289 \mathrm{cf}$ Outflow = $5.82 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=19,289 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=\quad 5.82$ cfs @ 12.09 hrs, Volume $=\quad 19,289 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 43.23' @ 12.09 hrs
Flood Elev= 50.16'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$42.03 '$	$24.0 "$ Round Culvert
		$L=264.0^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $=42.03^{\prime} / 40.71^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=5.73 cfs @ 12.09 hrs HW=43.22' TW=41.79' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 5.73 cfs @ 4.23 fps)

Pond E: DMH5

Prepared by Millennium Engineering, Inc.

Stage-Area-Storage for Pond E: DMH5

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
42.03	0	47.33	0
42.13	0	47.43	0
42.23	0	47.53	0
42.33	0	47.63	0
42.43	0	47.73	0
42.53	0	47.83	0
42.63	0	47.93	0
42.73	0	48.03	0
42.83	0	48.13	0
42.93	0	48.23	0
43.03	0	48.33	0
43.13	0	48.43	0
43.23	0	48.53	0
43.33	0	48.63	0
43.43	0	48.73	0
43.53	0	48.83	0
43.63	0	48.93	0
43.73	0	49.03	0
43.83	0	49.13	0
43.93	0	49.23	0
44.03	0	49.33	0
44.13	0	49.43	0
44.23	0	49.53	0
44.33	0	49.63	0
44.43	0	49.73	0
44.53	0	49.83	0
44.63	0	49.93	0
44.73	0	50.03	0
44.83	0	50.13	0
44.93	0		
45.03	0		
45.13	0		
45.23	0		
45.33	0		
45.43	0		
45.53	0		
45.63	0		
45.73	0		
45.83	0		
45.93	0		
46.03	0		
46.13	0		
46.23	0		
46.33	0		
46.43	0		
46.53	0		
46.63	0		
46.73	0		
46.83	0		
46.93	0		
47.03	0		
47.13	0		
47.23	0		

Summary for Pond F: CDS

Inflow Area = 157,230 sf, 45.56% Impervious, Inflow Depth $>1.477^{\prime \prime}$ for 2-Year event Inflow $=5.82$ cfs @ 12.09 hrs, Volume $=\quad 19,289 \mathrm{cf}$ Outflow = $5.82 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=19,289 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=5.82$ cfs @ 12.09 hrs, Volume $=19,289 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 41.80' @ 12.09 hrs
Flood Elev= 49.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	40.61'	24.0" Round Culvert
			$\mathrm{L}=126.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 40.61' / 39.98' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=5.73 cfs @ 12.09 hrs HW=41.79' TW=40.10' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 5.73 cfs @ 4.28 fps)
Pond F: CDS
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond F: CDS

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
40.61	0	45.91	0
40.71	0	46.01	0
40.81	0	46.11	0
40.91	0	46.21	0
41.01	0	46.31	0
41.11	0	46.41	0
41.21	0	46.51	0
41.31	0	46.61	0
41.41	0	46.71	0
41.51	0	46.81	0
41.61	0	46.91	0
41.71	0	47.01	0
41.81	0	47.11	0
41.91	0	47.21	0
42.01	0	47.31	0
42.11	0	47.41	0
42.21	0	47.51	0
42.31	0	47.61	0
42.41	0	47.71	0
42.51	0	47.81	0
42.61	0	47.91	0
42.71	0	48.01	0
42.81	0	48.11	0
42.91	0	48.21	0
43.01	0	48.31	0
43.11	0	48.41	0
43.21	0	48.51	0
43.31	0	48.61	0
43.41	0	48.71	0
43.51	0	48.81	0
43.61	0	48.91	0
43.71	0		
43.81	0		
43.91	0		
44.01	0		
44.11	0		
44.21	0		
44.31	0		
44.41	0		
44.51	0		
44.61	0		
44.71	0		
44.81	0		
44.91	0		
45.01	0		
45.11	0		
45.21	0		
45.31	0		
45.41	0		
45.51	0		
45.61	0		
45.71	0		
45.81	0		

Summary for Pond G: CDS

Inflow Area $=\quad 45,255$ sf, 1.33% Impervious, Inflow Depth > 1.86" for 2-Year event
Inflow $=2.22$ cfs @ 12.09 hrs, Volume $=\quad 7,014 \mathrm{cf}$
Outflow = $2.22 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 7,014 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 2.22$ cfs @ 12.09 hrs, Volume $=\quad 7,014 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.87' @ 12.40 hrs
Flood Elev= 50.70'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	46.90^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=24.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=46.90^{\prime} / 46.70^{\prime} \mathrm{S}=0.0083^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=2.17 cfs @ 12.09 hrs HW=47.84' TW=47.33' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 2.17 cfs @ 3.66 fps)
Pond G: CDS

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond G: CDS

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.90	0	49.55	0
46.95	0	49.60	0
47.00	0	49.65	0
47.05	0	49.70	0
47.10	0	49.75	0
47.15	0	49.80	0
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0	49.95	0
47.35	0	50.00	0
47.40	0	50.05	0
47.45	0	50.10	0
47.50	0	50.15	0
47.55	0	50.20	0
47.60	0	50.25	0
47.65	0	50.30	0
47.70	0	50.35	0
47.75	0	50.40	0
47.80	0	50.45	0
47.85	0	50.50	0
47.90	0	50.55	0
47.95	0	50.60	0
48.00	0	50.65	0
48.05	0	50.70	0
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20	0		
49.25	0		
49.30	0		
49.35	0		
49.40	0		
49.45	0		
49.50			
	0		

Summary for Link 100L: Bordering Vegetated Wetland
Inflow Area $=344,404$ sf, 0.17% Impervious, Inflow Depth >0.21 " for 2-Year event
Inflow $=0.62$ cfs @ 12.63 hrs , Volume $=\quad 6,160 \mathrm{cf}$
Primary $=0.62$ cfs @ 12.63 hrs , Volume $=\quad 6,160 \mathrm{cf}$, Atten $=0 \%$, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 100L: Bordering Vegetated Wetland

Time span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481$ points $\times 2$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Area 1S

Subcatchment2S: Area 2S

Subcatchment 3.1S: Area 3.1S

Subcatchment3S: Area 3S

Subcatchment4S: Area 4S

Subcatchment5S: Area 5S

Subcatchment6S: Area 6S

Subcatchment7S: Area 7S

Subcatchment8S: Area 8S

Subcatchment9S: Area 9S

Subcatchment 10S: Area 10S

Subcatchment11S: Area 11S

Subcatchment 12S: Area 12S

Subcatchment 13S: Area 13S

Subcatchment14S: Area 14S

Subcatchment 100S: Area 100S

Runoff Area $=5,035$ sf 31.38% Impervious Runoff Depth $>0.90^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff $=0.10 \mathrm{cfs} 379 \mathrm{cf}$

Runoff Area $=2,730$ sf 83.15% Impervious Runoff Depth >3.19 " Tc=6.0 min CN=88 Runoff=0.23 cfs 727 cf

Runoff Area $=6,480$ sf 100.00% Impervious Runoff Depth >4.26 " Tc=6.0 min CN=98 Runoff=0.64 cfs 2,301 cf

Runoff Area $=18,585$ sf 43.69% Impervious Runoff Depth >1.33 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=65$ Runoff $=0.61 \mathrm{cfs} 2,058 \mathrm{cf}$

Runoff Area $=6,150$ sf 33.33% Impervious Runoff Depth >0.96 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=59$ Runoff $=0.13 \mathrm{cfs} 492 \mathrm{cf}$

Runoff Area=15,230 sf 87.72% Impervious Runoff Depth >3.50 " Tc=6.0 min CN=91 Runoff=1.35 cfs $4,436 \mathrm{cf}$

Runoff Area=6,675 sf 50.86% Impervious Runoff Depth >1.60 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=69$ Runoff $=0.27 \mathrm{cfs} 890 \mathrm{cf}$

Runoff Area $=30,740$ sf 21.05% Impervious Runoff Depth $>2.72^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff= $2.20 \mathrm{cfs} 6,976 \mathrm{cf}$

Runoff Area=5,625 sf 44.44% Impervious Runoff Depth >4.15 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.55 \mathrm{cfs} 1,944 \mathrm{cf}$

Runoff Area $=14,465$ sf 70.83% Impervious Runoff Depth >4.03 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff=1.40 cfs $4,862 \mathrm{cf}$

Runoff Area $=13,830$ sf 63.16% Impervious Runoff Depth >2.46 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=0.90 \mathrm{cfs} 2,834 \mathrm{cf}$

Runoff Area $=38,165$ sf 33.83% Impervious Runoff Depth >2.63 " Tc=6.0 $\mathrm{min} \mathrm{CN}=82$ Runoff= $2.65 \mathrm{cfs} 8,377 \mathrm{cf}$

Runoff Area=19,480 sf 3.08% Impervious Runoff Depth>3.19" Tc=6.0 min CN=88 Runoff=1.61 cfs $5,185 \mathrm{cf}$

Runoff Area $=25,775$ sf 0.00% Impervious Runoff Depth $>3.10^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff=2.08 cfs $6,651 \mathrm{cf}$

Runoff Area $=55,000$ sf 0.00% Impervious Runoff Depth >4.03 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=96$ Runoff $=5.32 \mathrm{cfs} 18,486 \mathrm{cf}$

Runoff Area=244,149 sf 0.00% Impervious Runoff Depth >0.90 " Flow Length=805' Tc=30.0 min CN=58 Runoff=2.75 cfs $18,230 \mathrm{cf}$

Pond 1: CB1
Peak Elev=47.62' Inflow=0.10 cfs 379 cf
12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=16.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=0.10 cfs 379 cf

Peak Elev=47.02' Inflow=0.61 cfs 2,058 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=88.0$ ' $\mathrm{S}=0.0100$ '//' Outflow=0.61 cfs 2,058 cf

Peak Elev=48.20' Storage=352 cf Inflow=0.64 cfs 2,301 cf Outflow=0.22 cfs 2,301 cf

Pond 2: CB2

Peak Elev=47.72' Inflow=0.23 cfs 727 cf 12.0" Round Culvert $n=0.013 \mathrm{~L}=9.0^{\prime} \mathrm{S}=0.0100$ '/' Outflow=0.23 cfs 727 cf

Pond 2P: Shea Leaching chambers Peak Elev=43.03' Storage=10,303 cf Inflow=10.38 cfs 33,975 cf Outflow=2.13 cfs 33,980 cf

Pond 3: CB3
Peak Elev=46.04' Inflow=0.13 cfs 492 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0^{\prime} \mathrm{S}=0.0100$ '//' Outflow=0.13 cfs 492 cf

Pond 4: CB4
Peak Elev=46.46' Inflow=1.35 cfs 4,436 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=14.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=1.35 cfs $4,436 \mathrm{cf}$

Pond 5: CB5 Peak Elev=45.12' Inflow=0.27 cfs 890 cf
12.0" Round Culvert n=0.013 L=20.0' S=0.0100 '/' Outflow=0.27 cfs 890 cf

Pond 5.1: CB5.1
Peak Elev=45.48' Inflow=0.90 cfs 2,834 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=224.0$ ' $\mathrm{S}=0.0050$ '/' Outflow=0.90 cfs $2,834 \mathrm{cf}$

Peak Elev=45.40' Inflow=2.20 cfs 6,976 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=11 . \mathbf{O}^{\prime} \mathrm{S}=0.0100$ '/' Outflow=2.20 cfs $6,976 \mathrm{cf}$

Pond 7: CB7
Peak Elev=45.28' Inflow=0.55 cfs 1,944 cf
12.0" Round Culvert n=0.013 L=19.0' S=0.0100 '/' Outflow=0.55 cfs 1,944 cf

Peak Elev=45.60' Inflow=1.40 cfs 4,862 cf 12.0" Round Culvert n=0.013 L=11.0' $\mathrm{S}=0.0100$ '//' Outflow=1.40 cfs $4,862 \mathrm{cf}$

Pond 8.1: CB8.1

Pond 9: CB9
Peak Elev=45.39' Inflow=3.55 cfs $11,211 \mathrm{cf}$ 12.0" Round Culvert n=0.013 L=118.0' S=0.0050 '//' Outflow=3.55 cfs $11,211 \mathrm{cf}$

Peak Elev=49.79' Inflow=1.61 cfs 5,185 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=146.0$ ' $\mathrm{S}=0.0068$ '// Outflow=1.61 cfs $5,185 \mathrm{cf}$

Pond 10: CB10

Pond 104P: Inf Area 2
Peak Elev=48.90' Storage=8,060 cf Inflow=9.00 cfs 30,322 cf Discarded $=2.06$ cfs $30,135 \mathrm{cf}$ Primary $=0.08$ cfs 210 cf Outflow=2.14 cfs $30,345 \mathrm{cf}$

Pond A: DMH 1
Peak Elev=46.38' Inflow=0.93 cfs 3,164 cf 12.0" Round Culvert $n=0.013$ L=189.0' $\mathrm{S}=0.0050$ '/' Outflow=0.93 cfs 3,164 cf

Pond B: DMH2
Peak Elev=46.12' Inflow=2.41 cfs 8,092 cf 12.0" Round Culvert n=0.013 L=184.0' $\mathrm{S}=0.0050$ '/' Outflow=2.41 cfs 8,092 cf

Summary for Subcatchment 1S: Area 1S

Runoff $=\quad 0.10$ cfs @ 12.11 hrs, Volume= 379 cf , Depth> 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Paved parking, HSG A		
	1,580	98 P			
	3,455	$39>$	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	5,035	$58 \quad \begin{aligned} & \\ & \\ & 68 \\ & 3\end{aligned}$	Weighted Average 68.62\% Pervious Area 31.38\% Impervious Area		
	3,455				
	1,580				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entr

Subcatchment 1S: Area 15

Summary for Subcatchment 2S: Area 2S

Runoff $=\quad 0.23$ cfs @ 12.09 hrs, Volume= 727 cf, Depth> 3.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Paved parking, HSG A		
	2,270	$\begin{aligned} & 98 \\ & 39 \end{aligned}$			
	460		Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	2,730	88	Weighted Average 16.85\% Pervious Area 83.15\% Impervious Area		
	460				
	2,270				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2S: Area 2S

Summary for Subcatchment 3.1S: Area 3.1S
Runoff $=0.64$ cfs @ 12.09 hrs, Volume= $2,301 \mathrm{cf}$, Depth> 4.26"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)		CN Description			
	6,480	98	Roofs, HSG		
6,480		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 3.1S: Area 3.1S

Summary for Subcatchment 3S: Area 3S
Runoff $=\quad 0.61$ cfs @ 12.10 hrs, Volume= $2,058 \mathrm{cf}$, Depth> 1.33"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Description		
	8,120	98 P	Paved parking, HSG A$>75 \%$ Grass cover, Good, HSG A		
	10,465	$39>$			
	18,585	$65 \quad \mathrm{~W}$	Weighted Average 56.31\% Pervious Area 43.69\% Impervious Area		
	10,465				
	8,120				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 3S: Area 3S
Hydrograph

Summary for Subcatchment 4S: Area 4S

Runoff $=\quad 0.13$ cfs @ 12.11 hrs, Volume= 492 cf , Depth> 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Paved parking, HSG A		
	2,050	98			
	4,100	39	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	6,150	59	Weighted Average 66.67\% Pervious Area 33.33\% Impervious Area		
	4,100				
	2,050				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 4S: Area 4S

Summary for Subcatchment 5S: Area 5S
Runoff $=\quad 1.35$ cfs @ 12.09 hrs, Volume= 4,436 cf, Depth> 3.50"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description Paved parking, HSG A		
	13,360	$\begin{aligned} & \hline 98 \\ & 39 \end{aligned}$			
	1,870		Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	15,230	91	Weighted Average 12.28\% Pervious Area 87.72\% Impervious Area		
	1,870				
	13,360				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 5S: Area 5S
Hydrograph

Summary for Subcatchment 6S: Area 6S
Runoff $=0.27$ cfs @ 12.10 hrs, Volume= 890 cf , Depth> 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Subcatchment 6S: Area 6S

Hydrograph

Summary for Subcatchment 7S: Area 7S
Runoff $=\quad 2.20$ cfs @ 12.09 hrs, Volume= $6,976 \mathrm{cf}$, Depth> 2.72"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Description		
	6,470	98 P	Paved parking, HSG A		
	17,620	96	Gravel surface, HSG A		
	4,150	$39>$	>75\% Grass cover, Good, HSG A		
	2,500	30	Woods, Good, HSG A		
	30,740	83 V	Weighted Average		
	24,270		78.95\% Pervious Area		
	6,470		21.05\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 7S: Area 7S

Summary for Subcatchment 8S: Area 8S
Runoff $=\quad 0.55$ cfs @ 12.09 hrs, Volume= $1,944 \mathrm{cf}$, Depth> 4.15"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN	Description		
	2,500	98	Paved parking, HSG A		
	3,125	96			
	5,625	97	Weighted Average		
	3,125		55.56\% Pervious Area		
	2,500		44.44\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 8S: Area 8S
Hydrograph

Summary for Subcatchment 9S: Area 9S
Runoff $=1.40$ cfs @ 12.09 hrs, Volume= $4,862 \mathrm{cf}$, Depth> 4.03"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)	CN	Description
5,280	98	Roofs, HSG A
4,965	98	Paved parking, HSG A
3,820	96	Gravel surface, HSG A
400	39	$>75 \%$ Grass cover, Good, HSG A
14,465	96	Weighted Average
4,220		29.17\% Pervious Area
10,245		70.83% Impervious Area

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)

Subcatchment 9S: Area 9S

Summary for Subcatchment 10S: Area 10S

Runoff $=\quad 0.90$ cfs @ 12.09 hrs, Volume= $2,834 \mathrm{cf}$, Depth> 2.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Description		
	8,735	98 P	Paved parking, HSG A		
	1,325	96	Gravel surface, HSG A		
	870	39 >	>75\% Grass cover, Good, HSG A		
	2,900	30	Woods, Good, HSG A		
	13,830	80	Weighted Average		
	5,095		36.84\% Pervious Area		
	8,735		63.16\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 10S: Area 10S

Summary for Subcatchment 11S: Area 11S
Runoff $=\quad 2.65$ cfs @ 12.09 hrs, Volume $=8,377$ cf, Depth> 2.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Roofs, HSG A		
	5,280	98 R			
	7,630	98 P	Paved parking, HSG A		
	16,190	96 G	Gravel surface, HSG A		
	3,165	$39>$	>75\% Grass cover, Good, HSG A		
	5,900	30	Woods, Good, HSG A		
	38,165	82	Weighted Average		
	25,255		66.17\% Pervious Area		
	12,910		33.83\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 11S: Area 11S

Summary for Subcatchment 12S: Area 12S
Runoff $=1.61$ cfs @ 12.09 hrs, Volume= $5,185 \mathrm{cf}$, Depth> 3.19"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN D	Gravel surface, HSG A		
	15,960	96			
	2,920	$39>$	>75\% Grass cover, Good, HSG A		
	600	98 P	Paved parking, HSG A		
	19,480	88 W	Weighted Average		
	18,880		96.92\% Pervious Area		
	600		3.08\% Impervious Area		
Tc (\min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 12S: Area 12S

Summary for Subcatchment 13S: Area 13S
Runoff $=\quad 2.08$ cfs @ 12.09 hrs, Volume $=6,651 \mathrm{cf}$, Depth> 3.10"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Area (sf)	CN	Description
22,400	96	Gravel surface, HSG A
3,375	30	Woods, Good, HSG A
25,775	87	Weighted Average
25,775		100.00\% Pervious Area
Tc Length Slope Velocity Capacity (min) (feet) Description (ft/ft) (ft/sec) (cfs)		
6.0		

Subcatchment 13S: Area 13S

Summary for Subcatchment 14S: Area 14S
Runoff $=5.32$ cfs @ 12.09 hrs, Volume= 18,486 cf, Depth> 4.03"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

	Area (sf)	CN Description			
	55,000	96	Gravel surf	ce, HSG A	
55,000		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 14S: Area 14S

Summary for Subcatchment 100S: Area 100S

Runoff $=\quad 2.75$ cfs @ 12.51 hrs, Volume $=18,230 \mathrm{cf}$, Depth> 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.50"

Subcatchment 100S: Area 100 S

Summary for Pond 1: CB1

Inflow Area $=\quad 5,035$ sf, 31.38% Impervious, Inflow Depth > 0.90" for 10-Year event
Inflow $=0.10$ cfs @ 12.11 hrs, Volume= 379 cf
Outflow = 0.10 cfs @ 12.11 hrs , Volume $=\quad 379 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary =
0.10 cfs @ 12.11 hrs, Volume= 379 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.62' @ 12.11 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.46'	12.0" Round Culvert
			$\mathrm{L}=16.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.46' / 47.30' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.10 cfs @ 12.11 hrs HW=47.62' TW=46.36' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 0.10 cfs @ 1.80 fps)
Pond 1: CB1
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 1: CB1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0		
48.31	0		
48.36	0		
48.41	0		
48.46	0		
48.51	0		
48.56	0		
48.61	0		
48.66	0		
48.71	0		
48.76	0		
48.81	0		
48.86	0		
48.91	0		
48.96	0		
49.01	0		
49.06	0		
49.11	0		
49.16	0		
49.21	0		
49.26	0		
49.31	0		
49.36	0		
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0.01	0	
50.06	0		
	0		

Summary for Pond 1.1: CB1.1
Inflow Area = $\quad 18,585$ sf, 43.69% Impervious, Inflow Depth > 1.33" for 10-Year event
Inflow $=0.61$ cfs @ 12.10 hrs , Volume $=\quad 2,058 \mathrm{cf}$
Outflow = 0.61 cfs @ 12.10 hrs , Volume= $2,058 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
0.61 cfs @ 12.10 hrs, Volume=

2,058 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.02' @ 12.11 hrs
Flood Elev= 49.90'

Device	Routing	Invert	Outlet Devices
\#1	Primary	46.60'	12.0" Round Culvert
			$\mathrm{L}=88.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 46.60' / 45.72' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.56 cfs @ 12.10 hrs HW=47.02' TW=46.38' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.56 cfs @ 2.66 fps)

Pond 1.1: CB1.1

Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 1.1: CB1.1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.60	0	49.25	0
46.65	0	49.30	0
46.70	0	49.35	0
46.75	0	49.40	0
46.80	0	49.45	0
46.85	0	49.50	0
46.90	0	49.55	0
46.95	0	49.60	0
47.00	0	49.65	0
47.05	0	49.70	0
47.10	0	49.75	0
47.15	0	49.80	0
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0		
47.35	0		
47.40	0		
47.45	0		
47.50	0		
47.55	0		
47.60	0		
47.65	0		
47.70	0		
47.75	0		
47.80	0		
47.85	0		
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20			
	0		

Summary for Pond 1P: Cultec 180HD

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev=48.20' @ 12.35 hrs Surf.Area= 830 sf Storage= 352 cf
Flood Elev= 49.44' Surf.Area= 830 sf Storage= 889 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=7.1 \mathrm{~min}(756.5-749.4)$

Volume	Invert	Avail.Storage	Storage Description
\#1	47.90'	354 cf	Cultec C-100HD x 25 Inside \#2 Effective Size $=32.1^{1 "} \mathrm{~W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ ' $\times 1.86 \mathrm{sf} \times 5$ rows
\#2	47.40'	758 cf	$21.00^{\prime} \mathrm{W}$ x $39.50^{\prime} \mathrm{L} \times 2.71^{\prime}$ 'H Prismatoid 2,248 cf Overall -354 cf Embedded $=1,894$ cf $\times 40.0 \%$ Voids
1,111 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll} \hline 47.40^{\prime} & 8.27 \\ & \text { Con } \end{array}$	$0 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area ductivity to Groundwater Elevation $=45.40^{\prime}$

Discarded OutFlow Max=0.22 cfs @ 12.35 hrs HW=48.20' (Free Discharge)
—1=Exfiltration (Controls 0.22 cfs)

Pond 1P: Cultec 180HD

Hydrograph

Stage-Area-Storage for Pond 1P: Cultec 180HD

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (foet) (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.40	830	0	50.05	830	1,091
47.45	830	17	50.10	830	1,108
47.50	830	33			
47.55	830	50			
47.60	830	66			
47.65	830	83			
47.70	830	100			
47.75	830	116			
47.80	830	133			
47.85	830	149			
47.90	830	166			
47.95	830	198			
48.00	830	229			
48.05	830	260			
48.10	830	290			
48.15	830	321			
48.20	830	351			
48.25	830	381			
48.30	830	411			
48.35	830	440			
48.40	830	469			
48.45	830	498			
48.50	830	526			
48.55	830	553			
48.60	830	580			
48.65	830	605			
48.70	830	630			
48.75	830	653			
48.80	830	674			
48.85	830	693			
48.90	830	710			
48.95	830	727			
49.00	830	743			
49.05	830	760			
49.10	830	776			
49.15	830	793			
49.20	830	809			
49.25	830	826			
49.30	830	843			
49.35	830	859			
49.40	830	876			
49.45	830	892			
49.50	830	909			
49.55	830	926			
49.60	830	942			
49.65	830	959			
49.70	830	975			
49.75	830	992			
49.80	830	1,009			
49.85	830	1,025			
49.90	830	1,042			
49.95	830	1,058			
50.00	830	1,075			

Summary for Pond 2: CB2

Inflow Area = $\quad 2,730$ sf, 83.15% Impervious, Inflow Depth > 3.19" for 10-Year event
Inflow $=0.23 \mathrm{cfs}$ @ 12.09 hrs , Volume= 727 cf
Outflow = $0.23 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 727 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=\quad 0.23$ cfs @ 12.09 hrs, Volume $=727$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 47.72' @ 12.09 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.46'	12.0" Round Culvert
			$\mathrm{L}=9.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.46' / 47.37' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.22 cfs @ 12.09 hrs HW=47.72' TW=46.35' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 0.22 cfs @ 2.09 fps)
Pond 2: CB2
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 2: CB2

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0		
48.31	0		
48.36	0		
48.41	0		
48.46	0		
48.51	0		
48.56	0		
48.61	0		
48.66	0		
48.71	0		
48.76	0		
48.81	0		
48.86	0		
48.91	0		
48.96	0		
49.01	0		
49.06	0		
49.11	0		
49.16	0		
49.21	0		
49.26	0		
49.31	0		
49.36	0		
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0		
50.01	0		
50.06	0		
	0		

Summary for Pond 2P: Shea Leaching chambers

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 43.03' @ 12.54 hrs Surf.Area= 3,225 sf Storage= 10,303 cf
Flood Elev=47.17' Surf.Area= 3,225 sf Storage= 19,298 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 40.9 min (850.5-809.7)

Volume	Invert	Avail.Storage	Storage Description
\#1	39.25'	18,032 cf	96.0" W x 84.0" H Box Pipe Storage $\times 23$ Inside \#2 L= 14.0'
\#2	38.75'	1,266 cf	23,184 cf Overall - 6.0" Wall Thickness $=18,032$ cf 43.00 'W x 75.00 'L x 8.17'H Prismatoid 26,348 cf Overall $-23,184$ cf Embedded $=3,164 \mathrm{cf} \times 40.0 \%$ Voids
19,298 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll} \hline 38.75^{\prime} & 8.27 \\ & \text { Con } \end{array}$	in/hr Exfiltration over Surface area ductivity to Groundwater Elevation $=37.00^{\prime}$

Discarded OutFlow Max=2.13 cfs @ 12.54 hrs HW=43.03' (Free Discharge)
-1=Exfiltration (Controls 2.13 cfs)

Pond 2P: Shea Leaching chambers

Stage-Area-Storage for Pond 2P: Shea Leaching chambers

Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)
38.75	3,225	0	44.05	3,225	13,058
38.85	3,225	13	44.15	3,225	13,329
38.95	3,225	26	44.25	3,225	13,599
39.05	3,225	39	44.35	3,225	13,870
39.15	3,225	52	44.45	3,225	14,141
39.25	3,225	65	44.55	3,225	14,411
39.35	3,225	336	44.65	3,225	14,682
39.45	3,225	607	44.75	3,225	14,953
39.55	3,225	877	44.85	3,225	15,223
39.65	3,225	1,148	44.95	3,225	15,494
39.75	3,225	1,419	45.05	3,225	15,765
39.85	3,225	1,689	45.15	3,225	16,036
39.95	3,225	1,960	45.25	3,225	16,306
40.05	3,225	2,231	45.35	3,225	16,577
40.15	3,225	2,502	45.45	3,225	16,848
40.25	3,225	2,772	45.55	3,225	17,118
40.35	3,225	3,043	45.65	3,225	17,389
40.45	3,225	3,314	45.75	3,225	17,660
40.55	3,225	3,584	45.85	3,225	17,930
40.65	3,225	3,855	45.95	3,225	18,201
40.75	3,225	4,126	46.05	3,225	18,472
40.85	3,225	4,396	46.15	3,225	18,742
40.95	3,225	4,667	46.25	3,225	19,013
41.05	3,225	4,938	46.35	3,225	19,026
41.15	3,225	5,208	46.45	3,225	19,039
41.25	3,225	5,479	46.55	3,225	19,052
41.35	3,225	5,750	46.65	3,225	19,065
41.45	3,225	6,020	46.75	3,225	19,078
41.55	3,225	6,291	46.85	3,225	19,207
41.65	3,225	6,562	46.95	3,225	19,298
41.75	3,225	6,832	47.05	3,225	19,298
41.85	3,225	7,103	47.15	3,225	19,298
41.95	3,225	7,374			
42.05	3,225	7,644			
42.15	3,225	7,915			
42.25	3,225	8,186			
42.35	3,225	8,456			
42.45	3,225	8,727			
42.55	3,225	8,998			
42.65	3,225	9,269			
42.75	3,225	9,539			
42.85	3,225	9,810			
42.95	3,225	10,081			
43.05	3,225	10,351			
43.15	3,225	10,622			
43.25	3,225	10,893			
43.35	3,225	11,163			
43.45	3,225	11,434			
43.55	3,225	11,705			
43.65	3,225	11,975			
43.75	3,225	12,246			
43.85	3,225	12,517			
43.95	3,225	12,787			

Summary for Pond 3: CB3

Inflow Area $=\quad 6,150$ sf, 33.33% Impervious, Inflow Depth >0.96 " for 10-Year event
Inflow $=0.13$ cfs @ 12.11 hrs, Volume= 492 cf
Outflow = $0.13 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=\quad 492 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary $=0.13$ cfs @ 12.11 hrs, Volume $=\quad 492$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.04' @ 12.10 hrs
Flood Elev= 49.15'

Device	Routing	Invert	Outlet Devices
\#1	Primary	45.75'	12.0" Round Culvert
			$\mathrm{L}=20.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 45.75' / 45.55' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.11 hrs HW=46.02' TW=46.05' (Dynamic Tailwater)
_1=Culvert (Controls 0.00 cfs)
Pond 3: CB3
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3: CB3

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.75	0	48.40	0
45.80	0	48.45	0
45.85	0	48.50	0
45.90	0	48.55	0
45.95	0	48.60	0
46.00	0	48.65	0
46.05	0	48.70	0
46.10	0	48.75	0
46.15	0	48.80	0
46.20	0	48.85	0
46.25	0	48.90	0
46.30	0	48.95	0
46.35	0	49.00	0
46.40	0	49.05	0
46.45	0	49.10	0
46.50	0	49.15	0
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		
47.05	0		
47.10	0		
47.15	0		
47.20	0		
47.25	0		
47.30	0		
47.35	0		
47.40	0		
47.45	0		
47.50	0		
47.55	0		
47.60	0		
47.65	0		
47.70	0		
47.75	0		
47.80	0		
47.85	0		
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
485	0		

Summary for Pond 4: CB4

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.46' @ 12.09 hrs
Flood Elev= 49.16'

Device	Routing	Invert	Outlet Devices
\#1	Primary	45.76'	12.0" Round Culvert
			$\mathrm{L}=14.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 45.76' / 45.62' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.32 cfs @ 12.09 hrs HW=46.45' TW=46.01' (Dynamic Tailwater)
亡-1=Culvert (Barrel Controls 1.32 cfs @ 3.23 fps)
Pond 4: CB4
Hydrograph

\square Inflow
\square Primary

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 4: CB4

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.76	0	48.41	0
45.81	0	48.46	0
45.86	0	48.51	0
45.91	0	48.56	0
45.96	0	48.61	0
46.01	0	48.66	0
46.06	0	48.71	0
46.11	0	48.76	0
46.16	0	48.81	0
46.21	0	48.86	0
46.26	0	48.91	0
46.31	0	48.96	0
46.36	0	49.01	0
46.41	0	49.06	0
46.46	0	49.11	0
46.51	0	49.16	0
46.56	0		
46.61	0		
46.66	0		
46.71	0		
46.76	0		
46.81	0		
46.86	0		
46.91	0		
46.96	0		
47.11	0		
47.06	0		
47.11	0		
47.16	0		
47.21	0		
47.26	0		
47.31	0		
47.36	0		
47.41	0		
47.46	0		
47.51	0		
47.56	0		
47.61	0		
47.66	0		
47.71	0		
47.76	0		
47.81	0		
47.86	0		
47.91	0		
47.96	0		
48.01	0		
48.06	0		
48.11	0		
48.16	0		
48.21	0		
48.26	0		
48.31	0		
486	0		

Summary for Pond 5: CB5

Inflow Area $=\quad 6,675$ sf, 50.86% Impervious, Inflow Depth > 1.60" for 10-Year event
Inflow $=0.27$ cfs @ 12.10 hrs , Volume= 890 cf
Outflow = $0.27 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=\quad 890 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=0.27$ cfs @ 12.10 hrs, Volume $=890$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.12' @ 12.13 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.40^{\prime}	$12.0 "$ Round Culvert
		$\mathrm{L=20.0}^{\prime}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $44.40^{\prime} / 44.20^{\prime} \mathrm{S}=0.0100^{\prime} / \mathrm{Cl}^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=45.07' TW=45.14' (Dynamic Tailwater)
_1=Culvert (Controls 0.00 cfs)
Pond 5: CB5
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 5: CB5

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.40	0	47.05	0
44.45	0	47.10	0
44.50	0	47.15	0
44.55	0	47.20	0
44.60	0	47.25	0
44.65	0	47.30	0
44.70	0	47.35	0
44.75	0	47.40	0
44.80	0	47.45	0
44.85	0	47.50	0
44.90	0	47.55	0
44.95	0	47.60	0
45.00	0	47.65	0
45.05	0	47.70	0
45.10	0	47.75	0
45.15	0	47.80	0
45.20	0		
45.25	0		
45.30	0		
45.35	0		
45.40	0		
45.45	0		
45.50	0		
45.55	0		
45.60	0		
45.65	0		
45.70	0		
45.75	0		
45.80	0		
45.85	0		
45.90	0		
45.95	0		
46.00	0		
46.05	0		
46.10	0		
46.15	0		
46.20	0		
46.25	0		
46.30	0		
46.35	0		
46.40	0		
46.45	0		
46.50	0		
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		

Summary for Pond 5.1: CB5.1

Inflow Area =	13,830 sf,	63.16\% Impervious,	Inflow Depth > 2.46" for 10-Year event
Inflow	0.90 cfs @	12.09 hrs , Volume=	2,834 cf
Outflow	0.90 cfs @	12.09 hrs , Volume=	2,834 cf, Atten= 0\%, Lag= 0.0 min
Primary	0.90 cfs @	12.09 hrs , Volume=	2,834 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.48' @ 12.10 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.40'	12.0" Round Culvert
			$\mathrm{L}=224.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.40' / 43.28' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.71 cfs @ 12.09 hrs HW=45.44' TW=45.32' (Dynamic Tailwater)
\&-1=Culvert (Outlet Controls 0.71 cfs @ 1.08 fps)

Pond 5.1: CB5.1

Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 5.1: CB5.1

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.40	0	47.05	0
44.45	0	47.10	0
44.50	0	47.15	0
44.55	0	47.20	0
44.60	0	47.25	0
44.65	0	47.30	0
44.70	0	47.35	0
44.75	0	47.40	0
44.80	0	47.45	0
44.85	0	47.50	0
44.90	0	47.55	0
44.95	0	47.60	0
45.00	0	47.65	0
45.05	0	47.70	0
45.10	0	47.75	0
45.15	0	47.80	0
45.20	0		
45.25	0		
45.30	0		
45.35	0		
45.40	0		
45.45	0		
45.50	0		
45.55	0		
45.60	0		
45.65	0		
45.70	0		
45.75	0		
45.80	0		
45.85	0		
45.90	0		
45.95	0		
46.00	0		
46.05	0		
46.10	0		
46.15	0		
46.20	0		
46.25	0		
46.30	0		
46.35	0		
46.40	0		
46.45	0		
46.50	0		
46.55	0		
46.60	0		
46.65	0		
46.70	0		
46.75	0		
46.80	0		
46.85	0		
46.90	0		
46.95	0		
47.00	0		

Summary for Pond 6: CB6

Inflow Area = $\quad 30,740$ sf, 21.05% Impervious, Inflow Depth > 2.72" for 10-Year event Inflow = Outflow = 2.20 cfs @ 12.09 hrs , Volume $=$ 6,976 cf, Atten= 0%, Lag= 0.0 min Primary = 2.20 cfs @ 12.09 hrs, Volume= 6,976 cf 2.20 cfs @ 12.09 hrs, Volume= 6,976 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.40' @ 12.10 hrs
Flood Elev= 47.79'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.39'	12.0" Round Culvert
			$\mathrm{L}=11.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.39' / 44.28' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFlow Max=1.96 cfs @ 12.09 hrs HW=45.38' TW=45.11' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.96 cfs @ 3.13 fps)
Pond 6: CB6
Hydrograph

\square Inflow
\square Primary

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 6: CB6

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.39	0	47.04	0
44.44	0	47.09	0
44.49	0	47.14	0
44.54	0	47.19	0
44.59	0	47.24	0
44.64	0	47.29	0
44.69	0	47.34	0
44.74	0	47.39	0
44.79	0	47.44	0
44.84	0	47.49	0
44.89	0	47.54	0
44.94	0	47.59	0
44.99	0	47.64	0
45.04	0	47.69	0
45.09	0	47.74	0
45.14	0	47.79	0
45.19	0		
45.24	0		
45.29	0		
45.34	0		
45.39	0		
45.44	0		
45.49	0		
45.54	0		
45.59	0		
45.64	0		
45.69	0		
45.74	0		
45.79	0		
45.84	0		
45.89	0		
45.94	0		
45.99	0		
46.04	0		
46.09	0		
46.14	0		
46.19	0		
46.24	0		
46.29	0		
46.34	0		
46.39	0		
46.44	0		
46.49	0		
46.54	0		
46.59	0		
46.64	0		
46.69	0		
46.74	0		
46.79	0		
46.84	0		
46.89	0		
46.94	0		

Summary for Pond 7: CB7

Inflow Area = $\quad 5,625$ sf, 44.44% Impervious, Inflow Depth > 4.15" for 10-Year event
Inflow $=0.55$ cfs @ 12.09 hrs , Volume= $\quad 1,944 \mathrm{cf}$
Outflow = $0.55 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1,944 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
0.55 cfs @ 12.09 hrs, Volume $=$ 1,944 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.28' @ 12.09 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=19.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.69' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFlow Max=0.53 cfs @ 12.09 hrs HW=45.28' TW=44.69' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.53 cfs @ 2.73 fps)
Pond 7: CB7
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 7: CB7

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0		
45.73	0		
45.78	0		
45.83	0		
45.88	0		
45.33	0		
45.98	0		
46.03	0		
46.08	0		
46.13	0		
46.18	0		
46.23	0		
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48			

Summary for Pond 8: CB8

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.60' @ 12.09 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=11.0^{\prime} \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.77' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.36 cfs @ 12.09 hrs HW=45.59' TW=44.69' (Dynamic Tailwater)
L-1=Culvert (Barrel Controls 1.36 cfs @ 3.19 fps)
Pond 8: CB8
Hydrograph

Stage-Area-Storage for Pond 8: CB8

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0		
45.73	0		
45.78	0		
45.83	0		
45.88	0		
45.33	0		
45.98	0		
46.03	0		
46.08	0		
46.13	0		
46.18	0		
46.23	0		
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48			

Summary for Pond 8.1: CB8.1

Inflow Area $=\quad 51,995$ sf, 41.63% Impervious, Inflow Depth > 2.59" for 10-Year event
Inflow =

Outflow
Primary =
3.55 cfs @ 12.09 hrs, Volume=
$11,211 \mathrm{cf}$
$11,211 \mathrm{cf}$, Atten $=0 \%, \quad$ Lag $=0.0 \mathrm{~min}$
11,211 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.39' @ 12.09 hrs
Flood Elev= 48.20'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	43.18^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=118.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $43.18^{\prime} / 42.59^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=3.44 cfs @ 12.09 hrs HW=45.31' TW=43.76' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 3.44 cfs @ 4.38 fps)
Pond 8.1: CB8.1
Hydrograph

Stage-Area-Storage for Pond 8.1: CB8.1

$\begin{array}{r} \text { Elevation } \\ \quad \text { feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r}\begin{array}{r}\text { Elevation } \\ \text { (feet) }\end{array} \\ \hline\end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
43.18	0	45.30	0	47.42	0
43.22	0	45.34	0	47.46	0
43.26	0	45.38	0	47.50	0
43.30	0	45.42	0	47.54	0
43.34	0	45.46	0	47.58	0
43.38	0	45.50	0	47.62	0
43.42	0	45.54	0	47.66	0
43.46	0	45.58	0	47.70	0
43.50	0	45.62	0	47.74	0
43.54	0	45.66	0	47.78	0
43.58	0	45.70	0	47.82	0
43.62	0	45.74	0	47.86	0
43.66	0	45.78	0	47.90	0
43.70	0	45.82	0	47.94	0
43.74	0	45.86	0	47.98	0
43.78	0	45.90	0	48.02	0
43.82	0	45.94	0	48.06	0
43.86	0	45.98	0	48.10	0
43.90	0	46.02	0	48.14	0
43.94	0	46.06	0	48.18	0
43.98	0	46.10	0		
44.02	0	46.14	0		
44.06	0	46.18	0		
44.10	0	46.22	0		
44.14	0	46.26	0		
44.18	0	46.30	0		
44.22	0	46.34	0		
44.26	0	46.38	0		
44.30	0	46.42	0		
44.34	0	46.46	0		
44.38	0	46.50	0		
44.42	0	46.54	0		
44.46	0	46.58	0		
44.50	0	46.62	0		
44.54	0	46.66	0		
44.58	0	46.70	0		
44.62	0	46.74	0		
44.66	0	46.78	0		
44.70	0	46.82	0		
44.74	0	46.86	0		
44.78	0	46.90	0		
44.82	0	46.94	0		
44.86	0	46.98	0		
44.90	0	47.02	0		
44.94	0	47.06	0		
44.98	0	47.10	0		
45.02	0	47.14	0		
45.06	0	47.18	0		
45.10	0	47.22	0		
45.14	0	47.26	0		
45.18	0	47.30	0		
45.22	0	47.34	0		
45.26	0	47.38	0		

Summary for Pond 9: CB9

Inflow Area = $\quad 19,480$ sf, 3.08% Impervious, Inflow Depth > 3.19" for 10-Year event
Inflow $=1.61$ cfs @ 12.09 hrs, Volume= $5,185 \mathrm{cf}$
Outflow = $1.61 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 5,185 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min
Primary =
1.61 cfs @ 12.09 hrs, Volume=

5,185 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 49.79' @ 12.13 hrs
Flood Elev= 50.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	48.30^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=146.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert $=48.30^{\prime} / 47.30^{\prime} \mathrm{S}=0.0068^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=1.19 cfs @ 12.09 hrs HW=49.63' TW=49.42' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 1.19 cfs @ 1.51 fps)
Pond 9: CB9
Hydrograph

HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 9: CB9

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
48.30	0	49.36	0	50.42	0
48.32	0	49.38	0	50.44	0
48.34	0	49.40	0	50.46	0
48.36	0	49.42	0	50.48	0
48.38	0	49.44	0	50.50	0
48.40	0	49.46	0	50.52	0
48.42	0	49.48	0	50.54	0
48.44	0	49.50	0	50.56	0
48.46	0	49.52	0	50.58	0
48.48	0	49.54	0	50.60	0
48.50	0	49.56	0	50.62	0
48.52	0	49.58	0	50.64	0
48.54	0	49.60	0	50.66	0
48.56	0	49.62	0	50.68	0
48.58	0	49.64	0	50.70	0
48.60	0	49.66	0	50.72	0
48.62	0	49.68	0	50.74	0
48.64	0	49.70	0	50.76	0
48.66	0	49.72	0	50.78	0
48.68	0	49.74	0	50.80	0
48.70	0	49.76	0		
48.72	0	49.78	0		
48.74	0	49.80	0		
48.76	0	49.82	0		
48.78	0	49.84	0		
48.80	0	49.86	0		
48.82	0	49.88	0		
48.84	0	49.90	0		
48.86	0	49.92	0		
48.88	0	49.94	0		
48.90	0	49.96	0		
48.92	0	49.98	0		
48.94	0	50.00	0		
48.96	0	50.02	0		
48.98	0	50.04	0		
49.00	0	50.06	0		
49.02	0	50.08	0		
49.04	0	50.10	0		
49.06	0	50.12	0		
49.08	0	50.14	0		
49.10	0	50.16	0		
49.12	0	50.18	0		
49.14	0	50.20	0		
49.16	0	50.22	0		
49.18	0	50.24	0		
49.20	0	50.26	0		
49.22	0	50.28	0		
49.24	0	50.30	0		
49.26	0	50.32	0		
49.28	0	50.34	0		
49.30	0	50.36	0		
49.32	0	50.38	0		
49.34	0	50.40	0		

Summary for Pond 10: CB10

Inflow Area = $\quad 45,255$ sf, 1.33% Impervious, Inflow Depth > 3.14" for 10-Year event
Inflow $=3.69$ cfs @ 12.09 hrs, Volume $=11,836$ cf
Outflow = $3.69 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=11,836 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=\quad 3.69$ cfs @ 12.09 hrs, Volume $=\quad 11,836$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 49.50' @ 12.10 hrs
Flood Elev= 50.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.20'	12.0" Round Culvert
			$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.20' / 47.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFIow Max=3.01 cfs @ 12.09 hrs HW=49.42' TW=48.79' (Dynamic Tailwater)
①=Culvert (Inlet Controls 3.01 cfs @ 3.83 fps)

Pond 10: CB10

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 10: CB10

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0	49.95	0
47.35	0	50.00	0
47.40	0	50.05	0
47.45	0	50.10	0
47.50	0	50.15	0
47.55	0	50.20	0
47.60	0	50.25	0
47.65	0	50.30	0
47.70	0	50.35	0
47.75	0	50.40	0
47.80	0	50.45	0
47.85	0	50.50	0
47.90	0		
47.95	0		
48.00	0		
48.05	0		
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20	0		
49.25	0		
49.30	0		
49.35	0		
49.40	0		
49.45	0		
49.50	0		
49.55	0		
49.60	0		
49.65	0		
49.70	0.75		
49.80	0		
	0		

Summary for Pond 104P: Inf Area 2

Inflow Area =	100,255 sf,	0.60\% Impervious,	Inflow Depth > 3.63" for 10-Year event
Inflow	9.00 cfs @	12.09 hrs , Volume=	30,322 cf
Outflow	2.14 cfs @	12.48 hrs, Volume=	30,345 cf, Atten= 76\%, Lag= 23.6 min
Discarded	2.06 cfs @	12.48 hrs , Volume=	30,135 cf
Primary	0.08 cfs @	12.48 hrs, Volume=	210 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.90' @ 12.48 hrs Surf.Area= 4,886 sf Storage $=8,060 \mathrm{cf}$
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=26.7 \mathrm{~min}(806.3-779.6)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	46.50'	4,360 cf	$44.25^{\prime} \mathrm{W} \times 110.42$ 'L x 3.50'H Field A 17,101 cf Overall $-6,202$ cf Embedded $=10,899$ cf $\times 40.0 \%$ Voids
\#2A	47.00'	6,202 cf	ADS_StormTech SC-740 +Cap $\times 135$ Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12$ 'L $=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap 135 Chambers in 9 Rows

10,561 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	46.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
			Conductivity to Groundwater Elevation $=44.50$
\#2	Primary	46.50'	12.0" Round Culvert
			$\mathrm{L}=50.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 46.50' / 44.00' S=0.0500 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	49.20'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.200 .400 .600 .801 .00
			Coef. (English) 2.802 .923 .083 .303 .32
\#4	Device 2	48.20'	2.0" Vert. Orifice/Grate $\mathrm{C}=0.600$

Discarded OutFlow Max=2.05 cfs @ 12.48 hrs HW=48.89' (Free Discharge)
—1=Exfiltration (Controls 2.05 cfs)
Primary OutFlow Max=0.08 cfs @ 12.48 hrs HW=48.89' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Passes 0.08 cfs of 4.11 cfs potential flow)

- $3=$ Broad-Crested Rectangular Weir (Controls 0.00 cfs)
—4=Orifice/Grate (Orifice Controls 0.08 cfs @ 3.76 fps)

Pond 104P: Inf Area 2 - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12^{\prime} \mathrm{L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44 ' Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

15 Chambers/Row x 7.12' Long +0.81' Cap Length $\times 2$ = 108.42' Row Length +12.0" End Stone $\times 2=$ 110.42' Base Length

9 Rows x 51.0" Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone x $2=44.25^{\prime}$ Base Width
6.0 " Base +30.0 " Chamber Height +6.0 " Cover $=3.50$ Field Height

135 Chambers $\times 45.9$ cf $=6,201.9$ cf Chamber Storage
17,100.8 cf Field $-6,201.9$ cf Chambers $=10,898.9$ cf Stone $\times 40.0 \%$ Voids $=4,359.6$ cf Stone Storage
Chamber Storage + Stone Storage $=10,561.5 \mathrm{cf}=0.242$ af
Overall Storage Efficiency $=61.8 \%$
Overall System Size $=110.42^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
135 Chambers
633.4 cy Field
403.7 cy Stone

Pond 104P: Inf Area 2

Hydrograph

Stage-Area-Storage for Pond 104P: Inf Area 2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
46.50	4,886	0	49.15	4,886	8,797
46.55	4,886	98	49.20	4,886	8,927
46.60	4,886	195	49.25	4,886	9,050
46.65	4,886	293	49.30	4,886	9,167
46.70	4,886	391	49.35	4,886	9,276
46.75	4,886	489	49.40	4,886	9,382
46.80	4,886	586	49.45	4,886	9,485
46.85	4,886	684	49.50	4,886	9,584
46.90	4,886	782	49.55	4,886	9,682
46.95	4,886	879	49.60	4,886	9,780
47.00	4,886	977	49.65	4,886	9,877
47.05	4,886	1,182	49.70	4,886	9,975
47.10	4,886	1,387	49.75	4,886	10,073
47.15	4,886	1,591	49.80	4,886	10,171
47.20	4,886	1,795	49.85	4,886	10,268
47.25	4,886	1,999	49.90	4,886	10,366
47.30	4,886	2,202	49.95	4,886	10,464
47.35	4,886	2,404	50.00	4,886	10,561
47.40	4,886	2,605			
47.45	4,886	2,805			
47.50	4,886	3,005			
47.55	4,886	3,204			
47.60	4,886	3,402			
47.65	4,886	3,599			
47.70	4,886	3,795			
47.75	4,886	3,990			
47.80	4,886	4,184			
47.85	4,886	4,376			
47.90	4,886	4,568			
47.95	4,886	4,759			
48.00	4,886	4,948			
48.05	4,886	5,136			
48.10	4,886	5,323			
48.15	4,886	5,509			
48.20	4,886	5,692			
48.25	4,886	5,875			
48.30	4,886	6,056			
48.35	4,886	6,235			
48.40	4,886	6,413			
48.45	4,886	6,588			
48.50	4,886	6,762			
48.55	4,886	6,935			
48.60	4,886	7,105			
48.65	4,886	7,273			
48.70	4,886	7,438			
48.75	4,886	7,601			
48.80	4,886	7,761			
48.85	4,886	7,919			
48.90	4,886	8,074			
48.95	4,886	8,226			
49.00	4,886	8,374			
49.05	4,886	8,519			
49.10	4,886	8,660			

Summary for Pond A: DMH 1

Inflow Area =	26,350 sf,	45.43\% Impervious,	Inflow Depth > 1.44" for 10-Year event
Inflow	0.93 cfs @	12.10 hrs , Volume=	3,164 cf
Outflow	0.93 cfs @	12.10 hrs , Volume=	$3,164 \mathrm{cf}$, Atten= 0\%, Lag $=0.0 \mathrm{~min}$
Primary	0.93 cfs @	12.10 hrs , Volume=	3,164 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.38' @ 12.10 hrs
Flood Elev= 51.37'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$45.60 '$	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=189.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $45.60^{\prime} / 44.66^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=0.76 cfs @ 12.10 hrs HW=46.38' TW=46.12' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 0.76 cfs @ 1.60 fps)

Pond A: DMH 1

Hydrograph

Stage-Area-Storage for Pond A: DMH 1

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.60	0	47.72	0	49.84	0
45.64	0	47.76	0	49.88	0
45.68	0	47.80	0	49.92	0
45.72	0	47.84	0	49.96	0
45.76	0	47.88	0	50.00	0
45.80	0	47.92	0	50.04	0
45.84	0	47.96	0	50.08	0
45.88	0	48.00	0	50.12	0
45.92	0	48.04	0	50.16	0
45.96	0	48.08	0	50.20	0
46.00	0	48.12	0	50.24	0
46.04	0	48.16	0	50.28	0
46.08	0	48.20	0	50.32	0
46.12	0	48.24	0	50.36	0
46.16	0	48.28	0	50.40	0
46.20	0	48.32	0	50.44	0
46.24	0	48.36	0	50.48	0
46.28	0	48.40	0	50.52	0
46.32	0	48.44	0	50.56	0
46.36	0	48.48	0	50.60	0
46.40	0	48.52	0	50.64	0
46.44	0	48.56	0	50.68	0
46.48	0	48.60	0	50.72	0
46.52	0	48.64	0	50.76	0
46.56	0	48.68	0	50.80	0
46.60	0	48.72	0	50.84	0
46.64	0	48.76	0	50.88	0
46.68	0	48.80	0	50.92	0
46.72	0	48.84	0	50.96	0
46.76	0	48.88	0	51.00	0
46.80	0	48.92	0	51.04	0
46.84	0	48.96	0	51.08	0
46.88	0	49.00	0	51.12	0
46.92	0	49.04	0	51.16	0
46.96	0	49.08	0	51.20	0
47.00	0	49.12	0	51.24	0
47.04	0	49.16	0	51.28	0
47.08	0	49.20	0	51.32	0
47.12	0	49.24	0	51.36	0
47.16	0	49.28	0		
47.20	0	49.32	0		
47.24	0	49.36	0		
47.28	0	49.40	0		
47.32	0	49.44	0		
47.36	0	49.48	0		
47.40	0	49.52	0		
47.44	0	49.56	0		
47.48	0	49.60	0		
47.52	0	49.64	0		
47.56	0	49.68	0		
47.60	0	49.72	0		
47.64	0	49.76	0		
47.68	0	49.80	0		

Summary for Pond B: DMH2

Inflow Area = $\quad 47,730$ sf, 57.36% Impervious, Inflow Depth > 2.03" for 10-Year event
Inflow $=2.41$ cfs @ 12.09 hrs , Volume= $8,092 \mathrm{cf}$
Outflow = 2.41 cfs @ 12.09 hrs , Volume $=\quad 8,092 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=\quad 2.41$ cfs @ 12.09 hrs, Volume $=\quad 8,092 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.12' @ 12.10 hrs
Flood Elev= 49.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.56^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=184.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert $=44.56^{\prime} / 43.64^{\prime} \quad \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=2.27 cfs @ 12.09 hrs HW=46.06' TW=45.12' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 2.27 cfs @ 2.89 fps)
Pond B: DMH2

Stage-Area-Storage for Pond B: DMH2

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.56	0	47.21	0
44.61	0	47.26	0
44.66	0	47.31	0
44.71	0	47.36	0
44.76	0	47.41	0
44.81	0	47.46	0
44.86	0	47.51	0
44.91	0	47.56	0
44.96	0	47.61	0
45.01	0	47.66	0
45.06	0	47.71	0
45.11	0	47.76	0
45.16	0	47.81	0
45.21	0	47.86	0
45.26	0	47.91	0
45.31	0	47.96	0
45.36	0	48.01	0
45.41	0	48.06	0
45.46	0	48.11	0
45.51	0	48.16	0
45.56	0	48.21	0
45.61	0	48.26	0
45.66	0	48.31	0
45.71	0	48.36	0
45.76	0	48.41	0
45.81	0	48.46	0
45.86	0	48.51	0
45.91	0	48.56	0
45.96	0	48.61	0
46.01	0	48.66	0
46.06	0	48.71	0
46.11	0	48.76	0
46.16	0	48.81	0
46.21	0	48.86	0
46.26	0	48.91	0
46.31	0	48.96	0
46.36	0	49.01	0
46.41	0	49.06	0
46.46	0		0
46.51	0		0
46.56	0		0
46.61	0	49.11	0
46.66	0	49.26	0
46.71	0	49.31	0
46.76	0	49.36	0
46.81	0		0
46.86	0		0
46.91	0		0
46.96	0		0
47.01	0		0
47.06	0		0
47.11	0		0
47.16			
	0		0
	0		0

Summary for Pond C: DMH3

Inflow Area = 85,145 sf, 43.74% Impervious, Inflow Depth > 2.25" for 10-Year event Inflow $=4.88$ cfs @ 12.09 hrs, Volume $=15,958 \mathrm{cf}$ Outflow = $4.88 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 15,958 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary = 4.88 cfs @ 12.09 hrs, Volume= 15,958 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 45.15' @ 12.10 hrs
Flood Elev= 48.17'

Device	Routing	Invert	Outlet Devices
\#1	Primary	43.54'	18.0" Round Culvert
			$\mathrm{L}=97.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 43.54' / 43.05' S=0.0051 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=4.49 cfs @ 12.09 hrs HW=45.12' TW=44.72' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 4.49 cfs @ 3.00 fps)
Pond C: DMH3
Hydrograph

Stage-Area-Storage for Pond C: DMH3

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)
43.54	0	46.19	0
43.59	0	46.24	0
43.64	0	46.29	0
43.69	0	46.34	0
43.74	0	46.39	0
43.79	0	46.44	0
43.84	0	46.49	0
43.89	0	46.54	0
43.94	0	46.59	0
43.99	0	46.64	0
44.04	0	46.69	0
44.09	0	46.74	0
44.14	0	46.79	0
44.19	0	46.84	0
44.24	0	46.89	0
44.29	0	46.94	0
44.34	0	46.99	0
44.39	0	47.04	0
44.44	0	47.09	0
44.49	0	47.14	0
44.54	0	47.19	0
44.59	0	47.24	0
44.64	0	47.29	0
44.69	0	47.34	0
44.74	0	47.39	0
44.79	0	47.44	0
44.84	0	47.49	0
44.89	0	47.54	0
44.94	0	47.59	0
44.99	0	47.64	0
45.04	0	47.69	0
45.09	0	47.74	0
45.14	0	47.79	0
45.19	0	47.84	0
45.24	0	47.89	0
45.29	0	47.94	0
45.34	0	47.99	0
45.39	0	48.04	0
45.44	0	48.09	0
45.49	0	48.14	0
45.54	0		
45.59	0		
45.64	0		
45.69	0		
45.74	0		
45.79	0		
45.84	0		
45.89	0		
45.94	0		
45.99	0		
46.04	0		
46.09	0		
46.14	0		

Summary for Pond D: DMH4

Inflow Area = 105,235 sf, 47.50% Impervious, Inflow Depth > 2.60" for 10-Year event
Inflow $=6.83$ cfs @ 12.09 hrs, Volume= 22,764 cf
Outflow = $6.83 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 22,764 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=\quad 6.83$ cfs @ 12.09 hrs, Volume $=\quad 22,764$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 44.74' @ 12.10 hrs
Flood Elev= 48.47'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$42.95 '$	$18.0^{\prime \prime}$ Round Culvert
		$L=165.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $42.95^{\prime} / 42.13^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=6.57 cfs @ 12.09 hrs HW=44.71' TW=43.76' (Dynamic Tailwater)
\&-1=Culvert (Outlet Controls 6.57 cfs @ 3.99 fps)

Pond D: DMH4

Stage-Area-Storage for Pond D: DMH4

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)
42.95	0	45.07	0	47.19	0
42.99	0	45.11	0	47.23	0
43.03	0	45.15	0	47.27	0
43.07	0	45.19	0	47.31	0
43.11	0	45.23	0	47.35	0
43.15	0	45.27	0	47.39	0
43.19	0	45.31	0	47.43	0
43.23	0	45.35	0	47.47	0
43.27	0	45.39	0	47.51	0
43.31	0	45.43	0	47.55	0
43.35	0	45.47	0	47.59	0
43.39	0	45.51	0	47.63	0
43.43	0	45.55	0	47.67	0
43.47	0	45.59	0	47.71	0
43.51	0	45.63	0	47.75	0
43.55	0	45.67	0	47.79	0
43.59	0	45.71	0	47.83	0
43.63	0	45.75	0	47.87	0
43.67	0	45.79	0	47.91	0
43.71	0	45.83	0	47.95	0
43.75	0	45.87	0	47.99	0
43.79	0	45.91	0	48.03	0
43.83	0	45.95	0	48.07	0
43.87	0	45.99	0	48.11	0
43.91	0	46.03	0	48.15	0
43.95	0	46.07	0	48.19	0
43.99	0	46.11	0	48.23	0
44.03	0	46.15	0	48.27	0
44.07	0	46.19	0	48.31	0
44.11	0	46.23	0	48.35	0
44.15	0	46.27	0	48.39	0
44.19	0	46.31	0	48.43	0
44.23	0	46.35	0	48.47	0
44.27	0	46.39	0		
44.31	0	46.43	0		
44.35	0	46.47	0		
44.39	0	46.51	0		
44.43	0	46.55	0		
44.47	0	46.59	0		
44.51	0	46.63	0		
44.55	0	46.67	0		
44.59	0	46.71	0		
44.63	0	46.75	0		
44.67	0	46.79	0		
44.71	0	46.83	0		
44.75	0	46.87	0		
44.79	0	46.91	0		
44.83	0	46.95	0		
44.87	0	46.99	0		
44.91	0	47.03	0		
44.95	0	47.07	0		
44.99	0	47.11	0		
45.03	0	47.15	0		

Summary for Pond E: DMH5

Inflow Area = $\quad 157,230$ sf, 45.56% Impervious, Inflow Depth > 2.59" for 10-Year event Inflow $=10.38$ cfs @ 12.09 hrs, Volume $=\quad 33,975 \mathrm{cf}$
Outflow = $10.38 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 33,975 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary $=10.38$ cfs @ 12.09 hrs, Volume $=\quad 33,975 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 43.78' @ 12.09 hrs
Flood Elev= 50.16'

Device	Routing	Invert	Outlet Devices
\#1	Primary	42.03'	24.0" Round Culvert
			$\mathrm{L}=264.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 42.03' / 40.71' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.12 cfs @ 12.09 hrs HW=43.76' TW=42.30' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 10.12 cfs @ 4.70 fps)

Pond E: DMH5

Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond E: DMH5

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
42.03	0	47.33	0
42.13	0	47.43	0
42.23	0	47.53	0
42.33	0	47.63	0
42.43	0	47.73	0
42.53	0	47.83	0
42.63	0	47.93	0
42.73	0	48.03	0
42.83	0	48.13	0
42.93	0	48.23	0
43.03	0	48.33	0
43.13	0	48.43	0
43.23	0	48.53	0
43.33	0	48.63	0
43.43	0	48.73	0
43.53	0	48.83	0
43.63	0	48.93	0
43.73	0	49.03	0
43.83	0	49.13	0
43.93	0	49.23	0
44.03	0	49.33	0
44.13	0	49.43	0
44.23	0	49.53	0
44.33	0	49.63	0
44.43	0	49.73	0
44.53	0	49.83	0
44.63	0	49.93	0
44.73	0	50.03	0
44.83	0	50.13	0
44.93	0		
45.03	0		
45.13	0		
45.23	0		
45.33	0		
45.43	0		
45.53	0		
45.63	0		
45.73	0		
45.83	0		
45.93	0		
46.03	0		
46.13	0		
46.23	0		
46.33	0		
46.43	0		
46.53	0		
46.63	0		
46.73	0		
46.83	0		
46.93	0		
47.03	0		
47.13	0		
47.23	0		

Summary for Pond F: CDS

Inflow Area = $\quad 157,230$ sf, 45.56% Impervious, Inflow Depth > 2.59" for 10-Year event
Inflow $=10.38 \mathrm{cfs}$ @ 12.09 hrs , Volume= $33,975 \mathrm{cf}$
Outflow = $10.38 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 33,975 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=10.38$ cfs @ 12.09 hrs, Volume $=\quad 33,975$ cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 43.06' @ 12.52 hrs
Flood Elev= 49.00'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	40.61^{\prime}	$\mathbf{2 4 . 0 "}$ Round Culvert
		$L=126.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $40.61^{\prime} / 39.98^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=10.32 cfs @ 12.09 hrs HW=42.30' TW=41.21' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 10.32 cfs @ 4.91 fps)
Pond F: CDS
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond F: CDS

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
40.61	0	45.91	0
40.71	0	46.01	0
40.81	0	46.11	0
40.91	0	46.21	0
41.01	0	46.31	0
41.11	0	46.41	0
41.21	0	46.51	0
41.31	0	46.61	0
41.41	0	46.71	0
41.51	0	46.81	0
41.61	0	46.91	0
41.71	0	47.01	0
41.81	0	47.11	0
41.91	0	47.21	0
42.01	0	47.31	0
42.11	0	47.41	0
42.21	0	47.51	0
42.31	0	47.61	0
42.41	0	47.71	0
42.51	0	47.81	0
42.61	0	47.91	0
42.71	0	48.01	0
42.81	0	48.11	0
42.91	0	48.21	0
43.01	0	48.31	0
43.11	0	48.41	0
43.21	0	48.51	0
43.31	0	48.61	0
43.41	0	48.71	0
43.51	0	48.81	0
43.61	0	48.91	0
43.71	0		
43.81	0		
43.91	0		
44.01	0		
44.11	0		
44.21	0		
44.31	0		
44.41	0		
44.51	0		
44.61	0		
44.71	0		
44.81	0		
44.91	0		
45.01	0		
45.11	0		
45.21	0		
45.31	0		
45.41	0		
45.51	0		
45.61	0		
45.71	0		
45.81	0		

Summary for Pond G: CDS

Inflow Area $=\quad 45,255 \mathrm{sf}$, 1.33% Impervious, Inflow Depth > 3.14" for 10-Year event Inflow $=3.69$ cfs @ 12.09 hrs, Volume $=\quad 11,836 \mathrm{cf}$ Outflow = $3.69 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=11,836 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 3.69 cfs @ 12.09 hrs, Volume= 11,836 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.97' @ 12.43 hrs
Flood Elev= 50.70'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	46.90^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=24.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=46.90^{\prime} / 46.70^{\prime} \quad \mathrm{S}=0.0083^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=3.60 cfs @ 12.09 hrs HW=48.79' TW=47.88' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 3.60 cfs @ 4.59 fps)
Pond G: CDS

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond G: CDS

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.90	0	49.55	0
46.95	0	49.60	0
47.00	0	49.65	0
47.05	0	49.70	0
47.10	0	49.75	0
47.15	0	49.80	0
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0	49.95	0
47.35	0	50.00	0
47.40	0	50.05	0
47.45	0	50.10	0
47.50	0	50.15	0
47.55	0	50.20	0
47.60	0	50.25	0
47.65	0	50.30	0
47.70	0	50.35	0
47.75	0	50.40	0
47.80	0	50.45	0
47.85	0	50.50	0
47.90	0	50.55	0
47.95	0	50.60	0
48.00	0	50.65	0
48.05	0	50.70	0
48.10	0		
48.15	0		
48.20	0		
48.25	0		
48.30	0		
48.35	0		
48.40	0		
48.45	0		
48.50	0		
48.55	0		
48.60	0		
48.65	0		
48.70	0		
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20	0		
49.25	0		
49.30	0		
49.35	0		
49.40	0		
49.45	0		
49.50			
	0		

Summary for Link 100L: Bordering Vegetated Wetland

Inflow Area $=344,404$ sf, 0.17% Impervious, Inflow Depth >0.64 " for 10-Year event
Inflow $=2.83 \mathrm{cfs} @ 12.50 \mathrm{hrs}$, Volume= $18,440 \mathrm{cf}$

Primary $=2.83$ cfs @ 12.50 hrs , Volume $=\quad 18,440 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 100L: Bordering Vegetated Wetland

Time span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.05 \mathrm{hrs}, 481$ points $\times 2$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment1S: Area 1S

Subcatchment2S: Area 2S

Subcatchment 3.1S: Area 3.1S

Subcatchment3S: Area 3S

Subcatchment4S: Area 4S

Subcatchment5S: Area 5S

Subcatchment6S: Area 6S

Subcatchment7S: Area 7S

Subcatchment8S: Area 8S

Subcatchment9S: Area 9S

Subcatchment 10S: Area 10S

Subcatchment11S: Area 11S

Subcatchment 12S: Area 12S

Subcatchment 13S: Area 13S

Subcatchment14S: Area 14S

Subcatchment 100S: Area 100S

Runoff Area=5,035 sf 31.38% Impervious Runoff Depth >2.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff $=0.26 \mathrm{cfs} 870 \mathrm{cf}$

Runoff Area=2,730 sf 83.15% Impervious Runoff Depth $>5.10^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=88$ Runoff $=0.35 \mathrm{cfs} 1,161 \mathrm{cf}$

Runoff Area $=6,480$ sf 100.00% Impervious Runoff Depth >6.26 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=0.93 \mathrm{cfs} 3,379 \mathrm{cf}$

Runoff Area $=18,585$ sf 43.69% Impervious Runoff Depth $>2.72^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=65$ Runoff $=1.32 \mathrm{cfs} 4,210 \mathrm{cf}$

Runoff Area=6,150 sf 33.33% Impervious Runoff Depth >2.16 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=59$ Runoff $=0.34 \mathrm{cfs} 1,109 \mathrm{cf}$

Runoff Area=15,230 sf 87.72% Impervious Runoff Depth >5.44 " Tc=6.0 min CN=91 Runoff=2.05 cfs 6,909 cf

Runoff Area=6,675 sf 50.86% Impervious Runoff Depth $>3.11^{\prime \prime}$ $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=69$ Runoff $=0.55 \mathrm{cfs} 1,727 \mathrm{cf}$

Runoff Area $=30,740$ sf 21.05% Impervious Runoff Depth >4.55 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=83$ Runoff $=3.63 \mathrm{cfs} 11,666 \mathrm{cf}$

Runoff Area=5,625 sf 44.44% Impervious Runoff Depth>6.14" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff $=0.80 \mathrm{cfs} 2,878 \mathrm{cf}$

Runoff Area=14,465 sf 70.83% Impervious Runoff Depth>6.02" Tc=6.0 min CN=96 Runoff=2.05 cfs 7,259 cf

Runoff Area $=13,830$ sf 63.16% Impervious Runoff Depth >4.23 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=1.53 \mathrm{cfs} 4,877 \mathrm{cf}$

Runoff Area $=38,165$ sf 33.83% Impervious Runoff Depth >4.45 " Tc=6.0 min CN=82 Runoff=4.42 cfs $14,140 \mathrm{cf}$

Runoff Area $=19,480$ sf 3.08% Impervious Runoff Depth >5.10 " Tc=6.0 min CN=88 Runoff=2.52 cfs 8,287 cf

Runoff Area $=25,775$ sf $\quad 0.00 \%$ Impervious Runoff Depth >4.99 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=87$ Runoff $=3.28 \mathrm{cfs} 10,725 \mathrm{cf}$

Runoff Area $=55,000$ sf 0.00% Impervious Runoff Depth >6.02 " Tc=6.0 min CN=96 Runoff=7.78 cfs $27,599 \mathrm{cf}$

Runoff Area=244,149 sf 0.00% Impervious Runoff Depth>2.06" Flow Length=805' Tc=30.0 min CN=58 Runoff=7.26 cfs 41,904 cf
Pond 1: CB1
Pond 1.1: CB1.1
Pond 1P: Cultec 180HD
Pond 2: CB2
Pond 2P: Shea Leaching chambers

Peak Elev=52.16' Inflow=0.35 cfs 1,161 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=9.0$ ' $\mathrm{S}=0.0100$ '//' Outflow=0.35 cfs $1,161 \mathrm{cf}$

Pond 2P: Shea Leaching chambers Peak Elev=46.84' Storage=19,189 cf Inflow=17.28 cfs 56,806 cf

Pond 3: CB3	Peak Elev=51.10' Inflow=0.34 cfs 1,109 cf 12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' $\mathrm{S}=0.0100$ '/' Outflow=0.34 cfs $1,109 \mathrm{cf}$
Pond 4: CB4	Peak Elev=51.29' Inflow=2.05 cfs 6,909 cf
	12.0' Round Culvert n=0.013 L=14.0' S=0.0100 '/' Oufflow=2.05 cfs 6,909 cf
Pond 5: CB5	Peak Elev=49.50' Inflow=0.55 cfs 1,727 cf
	12.0' Round Culvert n=0.013 L=20.0' S=0.0100 '/' Oufflow=0.55 cfs 1,727 cf
Pond 5.1: CB5.1	Peak Elev=50.00' Inflow=1.53 cfs 4,877 cf
	12.0" Round Culvert n=0.013 L=224.0' $\mathrm{S}=0.0050$ '/' Oufflow=1.53 cfs 4,877 cf
Pond 6: CB6	Peak Elev=50.05' Inflow=3.63 cfs 11,666 cf
	12.0" Round Culvert n=0.013 L=11.0' S=0.0100 '/' Outfow=3.63 cfs 11,666 cf
Pond 7: CB7	Peak Elev=48.03' Inflow=0.80 cfs 2,878 cf
	12.0' Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=19.0$ ' S=0.0100 '/' Outflow=0.80 cfs $2,878 \mathrm{cf}$
Pond 8: CB8	Peak Elev=48.21' Inflow=2.05 cfs 7,259 cf
	12.0' Round Culvert n=0.013 L=11.0' S=0.0100 '/' Outflow=2.05 cfs 7,259 cf
Pond 8.1: CB8.1	Peak Elev=50.48' Inflow=5.95 cfs 19,017 cf
	12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=118.0$ ' S=0.0050 '/' Outflow=5.95 cfs 19,017 cf
Pond 9: CB9	Peak Elev=53.82' Inflow=2.52 cfs 8,287 cf
	12.0" Round Culvert n=0.013 L=146.0' S=0.0068 '/' Outflow=2.52 cfs 8,287 cf
Pond 10: CB10	Peak Elev=53.04' Inflow=5.79 cfs 19,012 cf
	12.0" Round Culvert $\mathrm{n}=0.013 \mathrm{~L}=20.0$ ' S=0.0100 '/' Outfow=5.79 cfs 19,012 cf
Pond 104P: Inf Area 2	Peak Elev=49.89' Storage=10,343 cf Inflow=13.57 cfs 46,612 cf
	carded= $2.52 \mathrm{cfs} 41,199 \mathrm{cf}$ Primary $=5.22 \mathrm{cfs} 5,423 \mathrm{cf}$ Outflow=7.74 cfs 46,623 cf

Pond A: DMH 1
Peak Elev=51.62' Inflow=1.93 cfs 6,241 cf 12.0" Round Culvert n=0.013 L=189.0' S=0.0050 '/' Outflow=1.93 cfs 6,241 cf

Pond B: DMH2
Peak Elev=51.82' Inflow=4.31 cfs 14,259 cf 12.0" Round Culvert n=0.013 L=184.0' S=0.0050 '/' Outflow=4.31 cfs $14,259 \mathrm{cf}$

Summary for Subcatchment 1S: Area 1 S
Runoff $=\quad 0.26$ cfs @ 12.10 hrs, Volume= 870 cf , Depth> 2.07"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Description		
	1,580	98 P	Paved parking, HSG A		
	3,455	$39>$	>75\% Grass cover, Good, HSG A		
	5,035	58 V	Weighted Average		
	3,455		68.62\% Pervious Area		
	1,580		31.38\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 1S: Area 1S
Hydrograph

Summary for Subcatchment 2S: Area 2S

Runoff $=\quad 0.35$ cfs @ 12.09 hrs, Volume= $1,161 \mathrm{cf}$, Depth> 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	2,270	$\begin{array}{r} 98 \\ 39 \\ \hline \end{array}$			
	460				
	2,730	88	Weighted Average 16.85\% Pervious Area 83.15\% Impervious Area		
	460				
	2,270				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 2S: Area 2S

Summary for Subcatchment 3.1S: Area 3.1S
Runoff $=0.93$ cfs @ 12.09 hrs, Volume $=3,379 \mathrm{cf}$, Depth> 6.26"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	6,480	98	Roofs, HSG A		
	6,480		100.00\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 3.1S: Area 3.1S

Summary for Subcatchment 3S: Area 3S
Runoff $=\quad 1.32$ cfs @ 12.10 hrs, Volume= $4,210 \mathrm{cf}$, Depth> 2.72"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Description		
	8,120	98 P	Paved parking, HSG A$>75 \%$ Grass cover, Good, HSG A		
	10,465	$39>$			
	18,585	$65 \quad \mathrm{~W}$	Weighted Average 56.31\% Pervious Area 43.69\% Impervious Area		
	10,465				
	8,120				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 3S: Area 3S
Hydrograph

Summary for Subcatchment 4S: Area 4S

Runoff $=\quad 0.34$ cfs @ 12.10 hrs, Volume $=1,109 \mathrm{cf}$, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Paved parking, HSG A		
	2,050	98			
	4,100	39	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	6,150	59	Weighted Average 66.67\% Pervious Area 33.33\% Impervious Area		
	4,100				
	2,050				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 4S: Area 4S

Summary for Subcatchment 5S: Area 5S
Runoff $=\quad 2.05$ cfs @ 12.09 hrs, Volume= $6,909 \mathrm{cf}$, Depth> 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	13,360	98	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	1,870	39			
	15,230	91	Weighted Average 12.28\% Pervious Area 87.72\% Impervious Area		
	1,870				
	13,360				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 5S: Area 5S

Summary for Subcatchment 6S: Area 6S
Runoff $=\quad 0.55$ cfs @ 12.09 hrs, Volume $=1,727 \mathrm{cf}$, Depth> 3.11"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Paved parking, HSG A $>75 \%$ Grass cover, Good, HSG A		
	3,395	98 P			
	3,280	$39>$			
	6,675	69	Weighted Average 49.14\% Pervious Area 50.86\% Impervious Area		
	3,280				
	3,395				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 6S: Area 6S

Hydrograph

Summary for Subcatchment 7S: Area 7S
Runoff $=\quad 3.63$ cfs @ 12.09 hrs, Volume $=11,666 \mathrm{cf}$, Depth> 4.55"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN D	Description		
	6,470	98 P	Paved parking, HSG A		
	17,620	96	Gravel surface, HSG A		
	4,150	$39>$	>75\% Grass cover, Good, HSG A		
	2,500	30	Woods, Good, HSG A		
	30,740	83 V	Weighted Average		
	24,270		78.95\% Pervious Area		
	6,470		21.05\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 7S: Area 7S

Summary for Subcatchment 8S: Area 8S
Runoff $=0.80$ cfs @ 12.09 hrs, Volume= $2,878 \mathrm{cf}$, Depth> 6.14"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	2,500	98	Paved parking, HSG A		
	3,125	96			
	5,625	97	Weighted Average		
	3,125		55.56\% Pervious Area		
	2,500		44.44\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 8S: Area 8S

Hydrograph

Summary for Subcatchment 9S: Area 9S
Runoff $=\quad 2.05$ cfs @ 12.09 hrs, Volume= $7,259 \mathrm{cf}$, Depth> 6.02"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	5,280	98			
	4,965	98 P	Paved parking, HSG A		
	3,820	96	Gravel surface, HSG A		
	400	39	>75\% Grass cover, Good, HSG A		
	14,465	96	Weighted Average		
	4,220		29.17\% Pervious Area		
	10,245		70.83\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 9S: Area 9S

Summary for Subcatchment 10S: Area 10S
Runoff $=\quad 1.53$ cfs @ 12.09 hrs, Volume= $4,877 \mathrm{cf}$, Depth> 4.23"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	8,735	98	Paved parking, HSG A		
	1,325	96	Gravel surface, HSG A		
	870	39	>75\% Grass cover, Good, HSG A		
	2,900	30	Woods, Good, HSG A		
	13,830	80	Weighted Average		
	5,095		36.84\% Pervious Area		
	8,735		63.16\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 10S: Area 10S

Summary for Subcatchment 11S: Area 11S
Runoff $=\quad 4.42$ cfs @ 12.09 hrs, Volume $=14,140$ cf, Depth> 4.45"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	5,280	98			
	7,630	98	Paved parking, HSG A		
	16,190	96	Gravel surface, HSG A		
	3,165	39	>75\% Grass cover, Good, HSG A		
	5,900	30	Woods, Good, HSG A		
	38,165	82	Weighted Average		
	25,255		66.17\% Pervious Area		
	12,910		33.83\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 11S: Area 11S

Summary for Subcatchment 12S: Area 12S
Runoff $=\quad 2.52$ cfs @ 12.09 hrs, Volume= 8,287 cf, Depth> 5.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN	Description		
	15,960	96	Gravel surface, HSG A		
	2,920	39	>75\% Grass cover, Good, HSG A		
	600	98	Paved parking, HSG A		
	19,480	88	Weighted Average		
	18,880		96.92\% Pervious Area		
	600		3.08\% Imp	rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry

Subcatchment 12S: Area 12S

Summary for Subcatchment 13S: Area 13S
Runoff $=\quad 3.28$ cfs @ 12.09 hrs, Volume= $10,725 \mathrm{cf}$, Depth> 4.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

Area (sf)	CN	Description
22,400	96	Gravel surface, HSG A
3,375	30	Woods, Good, HSG A
25,775	87	Weighted Average
25,775		100.00\% Pervious Area
Tc Length Slope Velocity Capacity (min) (feet) Description (ft/ft) (ft/sec) (cfs)		
6.0		

Subcatchment 13S: Area $13 S$

Summary for Subcatchment 14S: Area 14S
Runoff $=7.78$ cfs @ 12.09 hrs, Volume= $27,599 \mathrm{cf}$, Depth> 6.02"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

	Area (sf)	CN Description			
	55,000	96 Gravel surface, HSG A			
55,000		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry

Subcatchment 14S: Area 14S

Summary for Subcatchment 100S: Area 100S

Runoff $=7.26$ cfs @ 12.46 hrs, Volume= $41,904 \mathrm{cf}$, Depth> 2.06"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.50"

Area (sf)	CN	Description	
3,705	96	Gravel surface, HSG A	
32,069	30	Brush, Good, HSG A	
43,315	30	Woods, Good, HSG A	
165,060	70	Woods, Good, HSG C	

Subcatchment 100S: Area 100S

Summary for Pond 1: CB1

Inflow Area $=\quad 5,035$ sf, 31.38% Impervious, Inflow Depth > 2.07" for 100-Year event Inflow $=0.26 \mathrm{cfs}$ @ 12.10 hrs , Volume= 870 cf
Outflow = $0.26 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=\quad 870 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary $=0.26$ cfs @ 12.10 hrs , Volume $=870 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 52.15' @ 12.18 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.46'	12.0" Round Culvert
			$\mathrm{L}=16.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.46' / 47.30' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=49.20' TW=51.24' (Dynamic Tailwater)
L- $_{1=C u l v e r t ~(~ C o n t r o l s ~} 0.00$ cfs)
Pond 1: CB1
Hydrograph

Stage-Area-Storage for Pond 1: CB1

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0	50.91	0
48.31	0	50.96	0
48.36	0	51.01	0
48.41	0	51.06	0
48.46	0	51.11	0
48.51	0	51.16	0
48.56	0	51.21	0
48.61	0	51.26	0
48.66	0	51.31	0
48.71	0	51.36	0
48.76	0	51.41	0
48.81	0	51.46	0
48.86	0	51.51	0
48.91	0	51.56	0
48.96	0	51.61	0
49.01	0	51.66	0
49.06	0	51.71	0
49.11	0	51.76	0
49.16	0	51.81	0
49.21	0	51.86	0
49.26	0	51.91	0
49.31	0	51.96	0
49.36	0		0
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0		
50.01	0		
50.06	0		0
	0		0
	0		

Summary for Pond 1.1: CB1.1

Inflow Area $=18,585$ sf, 43.69% Impervious, Inflow Depth > 2.72" for 100-Year event
Inflow =

Outflow = 1.32 cfs @ 12.10 hrs , Volume= $4,210 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 1.32 cfs @ 12.10 hrs , Volume= 4,210 cf
1.32 cfs @ 12.10 hrs , Volume= 4,210 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 52.25' @ 12.18 hrs
Flood Elev= 49.90'

Device	Routing	Invert	Outlet Devices
\#1	Primary	46.60'	12.0" Round Culvert
			$\mathrm{L}=88.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 46.60' / 45.72' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=49.21' TW=51.04' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)
Pond 1.1: CB1.1
Hydrograph

Stage-Area-Storage for Pond 1.1: CB1.1

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.60	0	48.72	0	50.84	0
46.64	0	48.76	0	50.88	0
46.68	0	48.80	0	50.92	0
46.72	0	48.84	0	50.96	0
46.76	0	48.88	0	51.00	0
46.80	0	48.92	0	51.04	0
46.84	0	48.96	0	51.08	0
46.88	0	49.00	0	51.12	0
46.92	0	49.04	0	51.16	0
46.96	0	49.08	0	51.20	0
47.00	0	49.12	0	51.24	0
47.04	0	49.16	0	51.28	0
47.08	0	49.20	0	51.32	0
47.12	0	49.24	0	51.36	0
47.16	0	49.28	0	51.40	0
47.20	0	49.32	0	51.44	0
47.24	0	49.36	0	51.48	0
47.28	0	49.40	0	51.52	0
47.32	0	49.44	0	51.56	0
47.36	0	49.48	0	51.60	0
47.40	0	49.52	0	51.64	0
47.44	0	49.56	0	51.68	0
47.48	0	49.60	0	51.72	0
47.52	0	49.64	0	51.76	0
47.56	0	49.68	0	51.80	0
47.60	0	49.72	0	51.84	0
47.64	0	49.76	0	51.88	0
47.68	0	49.80	0	51.92	0
47.72	0	49.84	0	51.96	0
47.76	0	49.88	0	52.00	0
47.80	0	49.92	0	52.04	0
47.84	0	49.96	0	52.08	0
47.88	0	50.00	0		
47.92	0	50.04	0		
47.96	0	50.08	0		
48.00	0	50.12	0		
48.04	0	50.16	0		
48.08	0	50.20	0		
48.12	0	50.24	0		
48.16	0	50.28	0		
48.20	0	50.32	0		
48.24	0	50.36	0		
48.28	0	50.40	0		
48.32	0	50.44	0		
48.36	0	50.48	0		
48.40	0	50.52	0		
48.44	0	50.56	0		
48.48	0	50.60	0		
48.52	0	50.64	0		
48.56	0	50.68	0		
48.60	0	50.72	0		
48.64	0	50.76	0		
48.68	0	50.80	0		

Summary for Pond 1P: Cultec 180HD

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev=48.78' @ 12.41 hrs Surf.Area= 830 sf Storage= 666 cf
Flood Elev= 49.44' Surf.Area= 830 sf Storage= 889 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 13.1 min (756.6-743.6)

Volume	Invert	Avail.Storage	Storage Description
\#1	47.90'	354 cf	Cultec C-100HD x 25 Inside \#2 Effective Size $=32.1^{1 "} \mathrm{~W} \times 12.0^{\prime \prime} \mathrm{H}=>1.86 \mathrm{sf} \times 7.50^{\prime} \mathrm{L}=14.0 \mathrm{cf}$ Overall Size $=36.0^{\prime \prime} \mathrm{W} \times 12.5^{\prime \prime} \mathrm{H} \times 8.00^{\prime} \mathrm{L}$ with 0.50^{\prime} Overlap Row Length Adjustment $=+0.50$ ' $\times 1.86 \mathrm{sf} \times 5$ rows
\#2	47.40'	758 cf	$21.00^{\prime} \mathrm{W}$ x $39.50^{\prime} \mathrm{L} \times 2.71^{\prime}$ 'H Prismatoid 2,248 cf Overall -354 cf Embedded $=1,894$ cf $\times 40.0 \%$ Voids
1,111 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll} \hline 47.40^{\prime} & 8.27 \\ & \text { Con } \end{array}$	in/hr Exfiltration over Surface area ductivity to Groundwater Elevation $=45.40^{\prime}$

Discarded OutFlow Max=0.27 cfs @ 12.41 hrs HW=48.78' (Free Discharge)
———Exfiltration (Controls 0.27 cfs)

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 1P: Cultec 180HD

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (foet) (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.40	830	0	50.05	830	1,091
47.45	830	17	50.10	830	1,108
47.50	830	33			
47.55	830	50			
47.60	830	66			
47.65	830	83			
47.70	830	100			
47.75	830	116			
47.80	830	133			
47.85	830	149			
47.90	830	166			
47.95	830	198			
48.00	830	229			
48.05	830	260			
48.10	830	290			
48.15	830	321			
48.20	830	351			
48.25	830	381			
48.30	830	411			
48.35	830	440			
48.40	830	469			
48.45	830	498			
48.50	830	526			
48.55	830	553			
48.60	830	580			
48.65	830	605			
48.70	830	630			
48.75	830	653			
48.80	830	674			
48.85	830	693			
48.90	830	710			
48.95	830	727			
49.00	830	743			
49.05	830	760			
49.10	830	776			
49.15	830	793			
49.20	830	809			
49.25	830	826			
49.30	830	843			
49.35	830	859			
49.40	830	876			
49.45	830	892			
49.50	830	909			
49.55	830	926			
49.60	830	942			
49.65	830	959			
49.70	830	975			
49.75	830	992			
49.80	830	1,009			
49.85	830	1,025			
49.90	830	1,042			
49.95	830	1,058			
50.00	830	1,075			

Summary for Pond 2: CB2

Inflow Area $=\quad 2,730$ sf, 83.15% Impervious, Inflow Depth > 5.10" for 100-Year event
Inflow $=0.35$ cfs @ 12.09 hrs, Volume $=1,161 \mathrm{cf}$
Outflow = $0.35 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1,161 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary =
0.35 cfs @ 12.09 hrs, Volume=

1,161 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 52.16' @ 12.18 hrs
Flood Elev= 50.86'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	47.46^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L=9.0}$ CPP, square edge headwall, Ke $=0.500$	
		Inlet / Outlet Invert= $47.46^{\prime} / 47.37^{\prime} \mathrm{S}=0.0100 \mathrm{Cl}$ ' $\mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= $=0.79 \mathrm{sf}$	

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=48.85' TW=50.58' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)
Pond 2: CB2
Hydrograph

Stage-Area-Storage for Pond 2: CB2

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.46	0	50.11	0
47.51	0	50.16	0
47.56	0	50.21	0
47.61	0	50.26	0
47.66	0	50.31	0
47.71	0	50.36	0
47.76	0	50.41	0
47.81	0	50.46	0
47.86	0	50.51	0
47.91	0	50.56	0
47.96	0	50.61	0
48.01	0	50.66	0
48.06	0	50.71	0
48.11	0	50.76	0
48.16	0	50.81	0
48.21	0	50.86	0
48.26	0	50.91	0
48.31	0	50.96	0
48.36	0	51.01	0
48.41	0	51.06	0
48.46	0	51.11	0
48.51	0	51.16	0
48.56	0	51.21	0
48.61	0	51.26	0
48.66	0	51.31	0
48.71	0	51.36	0
48.76	0	51.41	0
48.81	0	51.46	0
48.86	0	51.51	0
48.91	0	51.56	0
48.96	0	51.61	0
49.01	0	51.66	0
49.06	0	51.71	0
49.11	0	51.76	0
49.16	0	51.81	0
49.21	0	51.86	0
49.26	0	51.91	0
49.31	0	51.96	0
49.36	0		0
49.41	0		
49.46	0		
49.51	0		
49.56	0		
49.61	0		
49.66	0		
49.71	0		
49.76	0		
49.81	0		
49.86	0		
49.91	0		
49.96	0		
50.01	0		
50.06	0		0
	0		0
	0		

Summary for Pond 2P: Shea Leaching chambers

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.84' @ 12.53 hrs Surf.Area= 3,225 sf Storage= 19,189 cf
Flood Elev=47.17' Surf.Area= 3,225 sf Storage= 19,298 cf
Plug-Flow detention time= (not calculated: outflow precedes inflow)
Center-of-Mass det. time $=57.0 \mathrm{~min}(855.3-798.3)$

Volume	Invert	Avail.Storage	Storage Description
\#1	39.25'	18,032 cf	96.0" W x 84.0" H Box Pipe Storage $\times 23$ Inside \#2 L= 14.0'
\#2	38.75'	1,266 cf	23,184 cf Overall - 6.0" Wall Thickness $=18,032$ cf 43.00 'W x 75.00 'L x 8.17'H Prismatoid 26,348 cf Overall $-23,184$ cf Embedded $=3,164 \mathrm{cf} \times 40.0 \%$ Voids
19,298 cf Total Available Storage			
Device	Routing	Invert Out	t Devices
\#1	Discarded	$\begin{array}{ll} \hline 38.75^{\prime} & 8.27 \\ & \text { Con } \end{array}$	in/hr Exfiltration over Surface area ductivity to Groundwater Elevation $=37.00^{\prime}$

Discarded OutFlow Max=3.46 cfs @ 12.53 hrs HW=46.81' (Free Discharge)
-1=Exfiltration (Controls 3.46 cfs)

Pond 2P: Shea Leaching chambers

Stage-Area-Storage for Pond 2P: Shea Leaching chambers

$\begin{array}{r} \text { Elevation } \\ (\text { feet }) \end{array}$	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	$\begin{gathered} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{gathered}$	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
38.75	3,225	0	44.05	3,225	13,058
38.85	3,225	13	44.15	3,225	13,329
38.95	3,225	26	44.25	3,225	13,599
39.05	3,225	39	44.35	3,225	13,870
39.15	3,225	52	44.45	3,225	14,141
39.25	3,225	65	44.55	3,225	14,411
39.35	3,225	336	44.65	3,225	14,682
39.45	3,225	607	44.75	3,225	14,953
39.55	3,225	877	44.85	3,225	15,223
39.65	3,225	1,148	44.95	3,225	15,494
39.75	3,225	1,419	45.05	3,225	15,765
39.85	3,225	1,689	45.15	3,225	16,036
39.95	3,225	1,960	45.25	3,225	16,306
40.05	3,225	2,231	45.35	3,225	16,577
40.15	3,225	2,502	45.45	3,225	16,848
40.25	3,225	2,772	45.55	3,225	17,118
40.35	3,225	3,043	45.65	3,225	17,389
40.45	3,225	3,314	45.75	3,225	17,660
40.55	3,225	3,584	45.85	3,225	17,930
40.65	3,225	3,855	45.95	3,225	18,201
40.75	3,225	4,126	46.05	3,225	18,472
40.85	3,225	4,396	46.15	3,225	18,742
40.95	3,225	4,667	46.25	3,225	19,013
41.05	3,225	4,938	46.35	3,225	19,026
41.15	3,225	5,208	46.45	3,225	19,039
41.25	3,225	5,479	46.55	3,225	19,052
41.35	3,225	5,750	46.65	3,225	19,065
41.45	3,225	6,020	46.75	3,225	19,078
41.55	3,225	6,291	46.85	3,225	19,207
41.65	3,225	6,562	46.95	3,225	19,298
41.75	3,225	6,832	47.05	3,225	19,298
41.85	3,225	7,103	47.15	3,225	19,298
41.95	3,225	7,374			
42.05	3,225	7,644			
42.15	3,225	7,915			
42.25	3,225	8,186			
42.35	3,225	8,456			
42.45	3,225	8,727			
42.55	3,225	8,998			
42.65	3,225	9,269			
42.75	3,225	9,539			
42.85	3,225	9,810			
42.95	3,225	10,081			
43.05	3,225	10,351			
43.15	3,225	10,622			
43.25	3,225	10,893			
43.35	3,225	11,163			
43.45	3,225	11,434			
43.55	3,225	11,705			
43.65	3,225	11,975			
43.75	3,225	12,246			
43.85	3,225	12,517			
43.95	3,225	12,787			

Summary for Pond 3: CB3

Inflow Area = 6,150 sf, 33.33\% Impervious, Inflow Depth > 2.16" for 100-Year event
Inflow $=0.34$ cfs @ 12.10 hrs , Volume= $1,109 \mathrm{cf}$
Outflow = 0.34 cfs @ 12.10 hrs , Volume $=1,109 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
0.34 cfs @ 12.10 hrs, Volume= 1,109 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 51.10' @ 12.14 hrs
Flood Elev= 49.15'

Device	Routing	Invert	Outlet Devices
\#1	Primary	45.75'	12.0" Round Culvert
			$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 45.75' / 45.55' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Concrete pipe, bends \& connections, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=50.54' TW=51.28' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)
Pond 3: CB3
Hydrograph

Stage-Area-Storage for Pond 3: CB3

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.75	0	47.87	0	49.99	0
45.79	0	47.91	0	50.03	0
45.83	0	47.95	0	50.07	0
45.87	0	47.99	0	50.11	0
45.91	0	48.03	0	50.15	0
45.95	0	48.07	0	50.19	0
45.99	0	48.11	0	50.23	0
46.03	0	48.15	0	50.27	0
46.07	0	48.19	0	50.31	0
46.11	0	48.23	0	50.35	0
46.15	0	48.27	0	50.39	0
46.19	0	48.31	0	50.43	0
46.23	0	48.35	0	50.47	0
46.27	0	48.39	0	50.51	0
46.31	0	48.43	0	50.55	0
46.35	0	48.47	0	50.59	0
46.39	0	48.51	0	50.63	0
46.43	0	48.55	0	50.67	0
46.47	0	48.59	0	50.71	0
46.51	0	48.63	0	50.75	0
46.55	0	48.67	0	50.79	0
46.59	0	48.71	0	50.83	0
46.63	0	48.75	0	50.87	0
46.67	0	48.79	0	50.91	0
46.71	0	48.83	0	50.95	0
46.75	0	48.87	0	50.99	0
46.79	0	48.91	0	51.03	0
46.83	0	48.95	0	51.07	0
46.87	0	48.99	0	51.11	0
46.91	0	49.03	0	51.15	0
46.95	0	49.07	0	51.19	0
46.99	0	49.11	0	51.23	0
47.03	0	49.15	0	51.27	0
47.07	0	49.19	0	51.31	0
47.11	0	49.23	0	51.35	0
47.15	0	49.27	0	51.39	0
47.19	0	49.31	0	51.43	0
47.23	0	49.35	0	51.47	
47.27	0	49.39	0	51.51	0
47.31	0	49.43	0	51.55	0
47.35	0	49.47	0	51.59	0
47.39	0	49.51	0	51.63	0
47.43	0	49.55	0	51.67	0
47.47	0	49.59	0		
47.51	0	49.63	0		
47.55	0	49.67	0		
47.59	0	49.71	0		
47.63	0	49.75	0		
47.67	0	49.79	0		
47.71	0	49.83	0		
47.75	0	49.87	0		
47.79	0	49.91	0		
47.83	0	49.95	0		

Summary for Pond 4: CB4

Inflow Area = $\quad 15,230$ sf, 87.72% Impervious, Inflow Depth > 5.44" for 100-Year event Inflow $=2.05$ cfs @ 12.09 hrs , Volume $=$ 6,909 cf Outflow = 2.05 cfs @ 12.09 hrs , Volume $=\quad 6,909 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 2.05 cfs @ 12.09 hrs, Volume= 6,909 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 51.29' @ 12.14 hrs
Flood Elev= 49.16'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	45.76^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=14.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert= $45.76^{\prime} / 45.62^{\prime} \mathrm{S}=0.0100$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=50.16' TW=50.59' (Dynamic Tailwater)
$廿_{1=C u l v e r t ~(~ C o n t r o l s ~} 0.00$ cfs)
Pond 4: CB4

Stage-Area-Storage for Pond 4: CB4

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.76	0	47.88	0	50.00	0
45.80	0	47.92	0	50.04	0
45.84	0	47.96	0	50.08	0
45.88	0	48.00	0	50.12	0
45.92	0	48.04	0	50.16	0
45.96	0	48.08	0	50.20	0
46.00	0	48.12	0	50.24	0
46.04	0	48.16	0	50.28	0
46.08	0	48.20	0	50.32	0
46.12	0	48.24	0	50.36	0
46.16	0	48.28	0	50.40	0
46.20	0	48.32	0	50.44	0
46.24	0	48.36	0	50.48	0
46.28	0	48.40	0	50.52	0
46.32	0	48.44	0	50.56	0
46.36	0	48.48	0	50.60	0
46.40	0	48.52	0	50.64	0
46.44	0	48.56	0	50.68	0
46.48	0	48.60	0	50.72	0
46.52	0	48.64	0	50.76	0
46.56	0	48.68	0	50.80	0
46.60	0	48.72	0	50.84	0
46.64	0	48.76	0	50.88	0
46.68	0	48.80	0	50.92	0
46.72	0	48.84	0	50.96	0
46.76	0	48.88	0	51.00	0
46.80	0	48.92	0	51.04	0
46.84	0	48.96	0	51.08	0
46.88	0	49.00	0	51.12	0
46.92	0	49.04	0	51.16	0
46.96	0	49.08	0	51.20	0
47.00	0	49.12	0	51.24	0
47.04	0	49.16	0	51.28	0
47.08	0	49.20	0	51.32	0
47.12	0	49.24	0	51.36	0
47.16	0	49.28	0	51.40	0
47.20	0	49.32	0	51.44	0
47.24	0	49.36	0	51.48	0
47.28	0	49.40	0	51.52	0
47.32	0	49.44	0	51.56	0
47.36	0	49.48	0	51.60	0
47.40	0	49.52	0	51.64	0
47.44	0	49.56	0	51.68	0
47.48	0	49.60	0	51.72	0
47.52	0	49.64	0	51.76	0
47.56	0	49.68	0	51.80	0
47.60	0	49.72	0		
47.64	0	49.76	0		
47.68	0	49.80	0		
47.72	0	49.84	0		
47.76	0	49.88	0		
47.80	0	49.92	0		
47.84	0	49.96	0		

Summary for Pond 5: CB5

Inflow Area $=\quad 6,675$ sf, 50.86% Impervious, Inflow Depth > 3.11" for 100-Year event
Inflow $=0.55$ cfs @ 12.09 hrs, Volume= $1,727 \mathrm{cf}$
Outflow = $0.55 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1,727 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
0.55 cfs @ 12.09 hrs, Volume $=$ 1,727 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 49.50' @ 12.16 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.40'	12.0" Round Culvert
			$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.40' / 44.20' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=47.69' TW=48.66' (Dynamic Tailwater)
_1=Culvert (Controls 0.00 cfs)
Pond 5: CB5
Hydrograph

Stage-Area-Storage for Pond 5: CB5

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.40	0	46.52	0	48.64	0
44.44	0	46.56	0	48.68	0
44.48	0	46.60	0	48.72	0
44.52	0	46.64	0	48.76	0
44.56	0	46.68	0	48.80	0
44.60	0	46.72	0	48.84	0
44.64	0	46.76	0	48.88	0
44.68	0	46.80	0	48.92	0
44.72	0	46.84	0	48.96	0
44.76	0	46.88	0	49.00	0
44.80	0	46.92	0	49.04	0
44.84	0	46.96	0	49.08	0
44.88	0	47.00	0	49.12	0
44.92	0	47.04	0	49.16	0
44.96	0	47.08	0	49.20	0
45.00	0	47.12	0	49.24	0
45.04	0	47.16	0	49.28	0
45.08	0	47.20	0	49.32	0
45.12	0	47.24	0	49.36	0
45.16	0	47.28	0	49.40	0
45.20	0	47.32	0	49.44	0
45.24	0	47.36	0	49.48	0
45.28	0	47.40	0		
45.32	0	47.44	0		
45.36	0	47.48	0		
45.40	0	47.52	0		
45.44	0	47.56	0		
45.48	0	47.60	0		
45.52	0	47.64	0		
45.56	0	47.68	0		
45.60	0	47.72	0		
45.64	0	47.76	0		
45.68	0	47.80	0		
45.72	0	47.84	0		
45.76	0	47.88	0		
45.80	0	47.92	0		
45.84	0	47.96	0		
45.88	0	48.00	0		
45.92	0	48.04	0		
45.96	0	48.08	0		
46.00	0	48.12	0		
46.04	0	48.16	0		
46.08	0	48.20	0		
46.12	0	48.24	0		
46.16	0	48.28	0		
46.20	0	48.32	0		
46.24	0	48.36	0		
46.28	0	48.40	0		
46.32	0	48.44	0		
46.36	0	48.48	0		
46.40	0	48.52	0		
46.44	0	48.56	0		
46.48	0	48.60	0		

Summary for Pond 5.1: CB5.1

Inflow Area $=\quad 13,830$ sf, 63.16% Impervious, Inflow Depth > 4.23" for 100-Year event Inflow $=1.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 4,877 \mathrm{cf}$
Outflow = $1.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 4,877 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =

4,877 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 50.00' @ 12.11 hrs
Flood Elev= 47.80'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.40^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=224.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $44.40^{\prime} / 43.28^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=49.56' TW=50.02' (Dynamic Tailwater)
—1=Culvert (Controls 0.00 cfs)

Pond 5.1: CB5. 1

Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 5.1: CB5.1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.40	0	49.70	0
44.50	0	49.80	0
44.60	0	49.90	0
44.70	0	50.00	0
44.80	0	50.10	0
44.90	0	50.20	0
45.00	0	50.30	0
45.10	0	50.40	0
45.20	0	50.50	0
45.30	0	50.60	0
45.40	0	50.70	0
45.50	0		
45.60	0		
45.70	0		
45.80	0		
45.90	0		
46.00	0		
46.10	0		
46.20	0		
46.30	0		
46.40	0		
46.50	0		
46.60	0		
46.70	0		
46.80	0		
46.90	0		
47.00	0		
47.10	0		
47.20	0		
47.30	0		
47.40	0		
47.50	0		
47.60	0		
47.70	0		
47.80	0		
47.90	0		
48.00	0		
48.10	0		
48.20	0		
48.30	0		
48.40	0		
48.50	0		
48.60	0		
48.70	0		
48.80	0		
48.90	0		
49.00	0		
49.10	0		
49.20	0		
49.30	0		
49.40	0.50	0	
49.60			

Summary for Pond 6: CB6

Inflow Area $=\quad 30,740$ sf, 21.05\% Impervious, Inflow Depth > 4.55" for 100-Year event Inflow $=3.63$ cfs @ 12.09 hrs, Volume $=\quad 11,666 \mathrm{cf}$ Outflow = $3.63 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=11,666 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary = 3.63 cfs @ 12.09 hrs, Volume= 11,666 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 50.05' @ 12.15 hrs
Flood Elev= 47.79'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.39'	12.0" Round Culvert
			$\mathrm{L}=11.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.39' / 44.28' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=48.34' TW=48.49' (Dynamic Tailwater)
$廿_{1=C u l v e r t ~(~ C o n t r o l s ~} 0.00$ cfs)
Pond 6: CB6
Hydrograph

Stage-Area-Storage for Pond 6: CB6

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.39	0	46.51	0	48.63	0
44.43	0	46.55	0	48.67	0
44.47	0	46.59	0	48.71	0
44.51	0	46.63	0	48.75	0
44.55	0	46.67	0	48.79	0
44.59	0	46.71	0	48.83	0
44.63	0	46.75	0	48.87	0
44.67	0	46.79	0	48.91	0
44.71	0	46.83	0	48.95	0
44.75	0	46.87	0	48.99	0
44.79	0	46.91	0	49.03	0
44.83	0	46.95	0	49.07	0
44.87	0	46.99	0	49.11	0
44.91	0	47.03	0	49.15	0
44.95	0	47.07	0	49.19	0
44.99	0	47.11	0	49.23	0
45.03	0	47.15	0	49.27	0
45.07	0	47.19	0	49.31	0
45.11	0	47.23	0	49.35	0
45.15	0	47.27	0	49.39	0
45.19	0	47.31	0	49.43	0
45.23	0	47.35	0	49.47	0
45.27	0	47.39	0	49.51	0
45.31	0	47.43	0	49.55	0
45.35	0	47.47	0	49.59	0
45.39	0	47.51	0	49.63	0
45.43	0	47.55	0	49.67	0
45.47	0	47.59	0	49.71	0
45.51	0	47.63	0	49.75	0
45.55	0	47.67	0	49.79	0
45.59	0	47.71	0	49.83	0
45.63	0	47.75	0	49.87	0
45.67	0	47.79	0	49.91	0
45.71	0	47.83	0	49.95	0
45.75	0	47.87	0	49.99	0
45.79	0	47.91	0	50.03	0
45.83	0	47.95	0	50.07	0
45.87	0	47.99	0		
45.91	0	48.03	0		
45.95	0	48.07	0		
45.99	0	48.11	0		
46.03	0	48.15	0		
46.07	0	48.19	0		
46.11	0	48.23	0		
46.15	0	48.27	0		
46.19	0	48.31	0		
46.23	0	48.35	0		
46.27	0	48.39	0		
46.31	0	48.43	0		
46.35	0	48.47	0		
46.39	0	48.51	0		
46.43	0	48.55	0		
46.47	0	48.59	0		

Summary for Pond 7: CB7

Inflow Area = 5,625 sf, 44.44\% Impervious, Inflow Depth > 6.14" for 100-Year event Inflow $=0.80 \mathrm{cfs}$ @ 12.09 hrs , Volume $=\quad 2,878 \mathrm{cf}$
Outflow = $0.80 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 2,878 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 0.80 cfs @ 12.09 hrs, Volume $=$ 2,878 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.03' @ 12.13 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=19.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.69' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=47.32' TW=48.17' (Dynamic Tailwater)
_1=Culvert (Controls 0.00 cfs)
Pond 7: CB7
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 7: CB7

Elevation feeet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0	48.33	0
45.73	0	48.38	0
45.78	0	48.43	0
45.83	0	48.48	0
45.88	0	48.53	0
45.93	0	48.58	0
45.98	0	48.63	0
46.03	0	48.68	0
46.08	0	48.73	0
46.13	0		
46.18	0		
46.23	0		
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48	0		
	0		

Summary for Pond 8: CB8

Inflow Area $=\quad 14,465$ sf, 70.83% Impervious, Inflow Depth > 6.02" for 100-Year event Inflow $=2.05$ cfs @ 12.09 hrs, Volume $=\quad 7,259 \mathrm{cf}$ Outflow = 2.05 cfs @ 12.09 hrs , Volume= $\quad 7,259 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 2.05 cfs @ 12.09 hrs, Volume= 7,259 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.21' @ 12.13 hrs
Flood Elev= 48.28'

Device	Routing	Invert	Outlet Devices
\#1	Primary	44.88'	12.0" Round Culvert
			$\mathrm{L}=11.0$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 44.88' / 44.77' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.09 hrs HW=47.55' TW=48.18' (Dynamic Tailwater)
$廿_{1=C u l v e r t ~(~ C o n t r o l s ~} 0.00$ cfs)
Pond 8: CB8
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 8: CB8

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.88	0	47.53	0
44.93	0	47.58	0
44.98	0	47.63	0
45.03	0	47.68	0
45.08	0	47.73	0
45.13	0	47.78	0
45.18	0	47.83	0
45.23	0	47.88	0
45.28	0	47.93	0
45.33	0	47.98	0
45.38	0	48.03	0
45.43	0	48.08	0
45.48	0	48.13	0
45.53	0	48.18	0
45.58	0	48.23	0
45.63	0	48.28	0
45.68	0	48.33	0
45.73	0	48.38	0
45.78	0	48.43	0
45.83	0	48.48	0
45.88	0	48.53	0
45.93	0	48.58	0
45.98	0	48.63	0
46.03	0	48.68	0
46.08	0	48.73	0
46.13	0	48.78	0
46.18	0	48.83	0
46.23	0	48.88	0
46.28	0		
46.33	0		
46.38	0		
46.43	0		
46.48	0		
46.53	0		
46.58	0		
46.63	0		
46.68	0		
46.73	0		
46.78	0		
46.83	0		
46.88	0		
46.93	0		
46.98	0		
47.03	0		
47.08	0		
47.13	0		
47.18	0		
47.23	0		
47.28	0		
47.33	0		
47.38	0		
47.43	0		
47.48	0		

Summary for Pond 8.1: CB8.1

Inflow Area $=\quad 51,995$ sf, 41.63% Impervious, Inflow Depth > 4.39" for 100-Year event Inflow = Outflow = 5.95 cfs @ 12.09 hrs , Volume $=\quad 19,017 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 5.95 cfs @ 12.09 hrs, Volume= 19,017 cf 5.95 cfs @ 12.09 hrs, Volume= 19,017 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 50.48' @ 12.11 hrs
Flood Elev= 48.20'

Device	Routing	Invert	Outlet Devices
\#1	Primary	43.18'	12.0" Round Culvert
			$\mathrm{L}=118.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 43.18' / 42.59' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area $=0.79$ sf

Primary OutFlow Max=5.64 cfs @ 12.09 hrs HW=50.00' TW=45.84' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 5.64 cfs @ 7.17 fps)
Pond 8.1: CB8.1
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 8.1: CB8.1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
43.18	0	48.48	0
43.28	0	48.58	0
43.38	0	48.68	0
43.48	0	48.78	0
43.58	0	48.88	0
43.68	0	48.98	0
43.78	0	49.08	0
43.88	0	49.18	0
43.98	0	49.28	0
44.08	0	49.38	0
44.18	0	49.48	0
44.28	0	49.58	0
44.38	0	49.68	0
44.48	0	49.78	0
44.58	0	49.88	0
44.68	0	49.98	0
44.78	0	50.08	0
44.88	0	50.18	0
44.98	0	50.28	0
45.08	0	50.38	0
45.18	0		
45.28	0		
45.38	0		
45.48	0		
45.58	0		
45.68	0		
45.78	0		
45.88	0		
45.98	0		
46.08	0		
46.18	0		
46.28	0		
46.38	0		
46.48	0		
46.58	0		
46.68	0		
46.78	0		
46.88	0		
46.98	0		
47.08	0		
47.88	0		
47.28	0		
47.38	0		
47.48	0		
47.58	0		
47.68	0		
47.78	0		
47.88	0		
47.98	0		
48.08	0		
48.18	0		
48.28	0		
48.38			
	0		

Summary for Pond 9: CB9

Inflow Area $=19,480$ sf, 3.08% Impervious, Inflow Depth > 5.10" for 100-Year event Inflow $=2.52$ cfs @ 12.09 hrs , Volume $=\quad 8,287 \mathrm{cf}$ Outflow = $2.52 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=8,287 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 2.52 cfs @ 12.09 hrs, Volume= 8,287 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 53.82' @ 12.12 hrs
Flood Elev= 50.80'

Device	Routing	Invert	Outlet Devices
\#1	Primary	48.30'	12.0" Round Culvert
			$\mathrm{L}=146.0$ ' CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 48.30' / 47.30' S=0.0068 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.66 cfs @ 12.09 hrs HW=53.21' TW=52.79' (Dynamic Tailwater)
\&-1=Culvert (Outlet Controls 1.66 cfs @ 2.12 fps)
Pond 9: CB9
Hydrograph

Stage-Area-Storage for Pond 9: CB9

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
48.30	0	50.42	0	52.54	0
48.34	0	50.46	0	52.58	0
48.38	0	50.50	0	52.62	0
48.42	0	50.54	0	52.66	0
48.46	0	50.58	0	52.70	0
48.50	0	50.62	0	52.74	0
48.54	0	50.66	0	52.78	0
48.58	0	50.70	0	52.82	0
48.62	0	50.74	0	52.86	0
48.66	0	50.78	0	52.90	0
48.70	0	50.82	0	52.94	0
48.74	0	50.86	0	52.98	0
48.78	0	50.90	0	53.02	0
48.82	0	50.94	0	53.06	0
48.86	0	50.98	0	53.10	0
48.90	0	51.02	0	53.14	0
48.94	0	51.06	0	53.18	0
48.98	0	51.10	0	53.22	0
49.02	0	51.14	0	53.26	0
49.06	0	51.18	0	53.30	0
49.10	0	51.22	0	53.34	0
49.14	0	51.26	0	53.38	0
49.18	0	51.30	0	53.42	0
49.22	0	51.34	0	53.46	0
49.26	0	51.38	0	53.50	0
49.30	0	51.42	0	53.54	0
49.34	0	51.46	0	53.58	0
49.38	0	51.50	0	53.62	0
49.42	0	51.54	0	53.66	0
49.46	0	51.58	0	53.70	0
49.50	0	51.62	0		
49.54	0	51.66	0		
49.58	0	51.70	0		
49.62	0	51.74	0		
49.66	0	51.78	0		
49.70	0	51.82	0		
49.74	0	51.86	0		
49.78	0	51.90	0		
49.82	0	51.94	0		
49.86	0	51.98	0		
49.90	0	52.02	0		
49.94	0	52.06	0		
49.98	0	52.10	0		
50.02	0	52.14	0		
50.06	0	52.18	0		
50.10	0	52.22	0		
50.14	0	52.26	0		
50.18	0	52.30	0		
50.22	0	52.34	0		
50.26	0	52.38	0		
50.30	0	52.42	0		
50.34	0	52.46	0		
50.38	0	52.50	0		

Summary for Pond 10: CB10

Inflow Area $=\quad 45,255$ sf, 1.33% Impervious, Inflow Depth > 5.04" for 100-Year event Inflow $=5.79$ cfs @ 12.09 hrs, Volume $=19,012 \mathrm{cf}$ Outflow = $5.79 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=19,012 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 5.79 cfs @ 12.09 hrs, Volume= 19,012 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 53.04' @ 12.10 hrs
Flood Elev= 50.50'

Device	Routing	Invert	Outlet Devices
\#1	Primary	47.20'	12.0" Round Culvert
			$\mathrm{L}=20.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 47.20' / 47.00' S=0.0100 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=4.88 cfs @ 12.09 hrs HW=52.79' TW=51.12' (Dynamic Tailwater)
——1=Culvert (Inlet Controls 4.88 cfs @ 6.21 fps)

Pond 10: CB10

Stage-Area-Storage for Pond 10: CB10

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
47.20	0	49.32	0	51.44	0
47.24	0	49.36	0	51.48	0
47.28	0	49.40	0	51.52	0
47.32	0	49.44	0	51.56	0
47.36	0	49.48	0	51.60	0
47.40	0	49.52	0	51.64	0
47.44	0	49.56	0	51.68	0
47.48	0	49.60	0	51.72	0
47.52	0	49.64	0	51.76	0
47.56	0	49.68	0	51.80	0
47.60	0	49.72	0	51.84	0
47.64	0	49.76	0	51.88	0
47.68	0	49.80	0	51.92	0
47.72	0	49.84	0	51.96	0
47.76	0	49.88	0	52.00	0
47.80	0	49.92	0	52.04	0
47.84	0	49.96	0	52.08	0
47.88	0	50.00	0	52.12	0
47.92	0	50.04	0	52.16	0
47.96	0	50.08	0	52.20	0
48.00	0	50.12	0	52.24	0
48.04	0	50.16	0	52.28	0
48.08	0	50.20	0	52.32	0
48.12	0	50.24	0	52.36	0
48.16	0	50.28	0	52.40	0
48.20	0	50.32	0	52.44	0
48.24	0	50.36	0	52.48	0
48.28	0	50.40	0	52.52	0
48.32	0	50.44	0	52.56	0
48.36	0	50.48	0	52.60	0
48.40	0	50.52	0	52.64	0
48.44	0	50.56	0	52.68	0
48.48	0	50.60	0	52.72	0
48.52	0	50.64	0	52.76	0
48.56	0	50.68	0	52.80	0
48.60	0	50.72	0	52.84	0
48.64	0	50.76	0	52.88	0
48.68	0	50.80	0	52.92	0
48.72	0	50.84	0	52.96	0
48.76	0	50.88	0	53.00	0
48.80	0	50.92	0	53.04	0
48.84	0	50.96	0		
48.88	0	51.00	0		
48.92	0	51.04	0		
48.96	0	51.08	0		
49.00	0	51.12	0		
49.04	0	51.16	0		
49.08	0	51.20	0		
49.12	0	51.24	0		
49.16	0	51.28	0		
49.20	0	51.32	0		
49.24	0	51.36	0		
49.28	0	51.40	0		

Summary for Pond 104P: Inf Area 2

Inflow Area =	100,255 sf,	0.60\% Impervious,	Inflow Depth > 5.58" for 100-Year event
Inflow	13.57 cfs @	12.09 hrs , Volume=	46,612 cf
Outflow	7.74 cfs @	12.22 hrs , Volume=	$46,623 \mathrm{cf}$, Atten= $43 \%, \mathrm{Lag}=8.2 \mathrm{~min}$
Discarded	2.52 cfs @	12.22 hrs , Volume=	41,199 cf
Primary	5.22 cfs @	12.22 hrs , Volume=	5,423 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev=49.89' @ 12.22 hrs Surf.Area=4,886 sf Storage= 10,343 cf
Plug-Flow detention time $=$ (not calculated: outflow precedes inflow)
Center-of-Mass det. time= 26.1 min (796.0-769.9)

Volume	Invert	Avail.Storage	Storage Description
\#1A	46.50'	$4,360 \mathrm{cf}$	$44.25^{\prime} \mathrm{W} \times 110.42$ 'L x 3.50'H Field A 17,101 cf Overall $-6,202$ cf Embedded $=10,899$ cf $\times 40.0 \%$ Voids
\#2A	47.00'	6,202 cf	ADS_StormTech SC-740 +Cap x 135 Inside \#1 Effective Size $=44.6^{\prime \prime} \mathrm{W} \times 30.0 \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$ Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap 135 Chambers in 9 Rows

10,561 cf Total Available Storage
Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	46.50'	$8.270 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface are
			Conductivity to Groundwater Elevation $=44.50$
\#2	Primary	46.50'	12.0" Round Culvert
			$\mathrm{L}=50.0$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 46.50' / 44.00' S=0.0500 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 0.79 sf
\#3	Device 2	49.20'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			$\begin{array}{lllll}\text { Head (feet) } & 0.20 & 0.40 & 0.60 & 0.80 \\ 1.00\end{array}$
			Coef. (English) $2.802 .923 .08 \quad 3.303 .32$
\#4	Device 2	48.20'	2.0" Vert. Orifice/Grate $C=0.600$

Discarded OutFlow Max=2.51 cfs @ 12.22 hrs HW=49.86' (Free Discharge)
—1=Exfiltration (Controls 2.51 cfs)
Primary OutFlow Max=5.04 cfs @ 12.22 hrs HW=49.85' TW=0.00' (Dynamic Tailwater)
—2=Culvert (Inlet Controls 5.04 cfs @ 6.42 fps)
-3=Broad-Crested Rectangular Weir (Passes < 6.64 cfs potential flow)
-4=Orifice/Grate (Passes < 0.13 cfs potential flow)

Pond 104P: Inf Area 2 - Chamber Wizard Field A
Chamber Model = ADS_StormTechSC-740 +Cap (ADS StormTech®SC-740 with cap length)
Effective Size= $44.6^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H}=>6.45 \mathrm{sf} \times 7.12 \mathrm{~L}=45.9 \mathrm{cf}$
Overall Size $=51.0^{\prime \prime} \mathrm{W} \times 30.0^{\prime \prime} \mathrm{H} \times 7.56^{\prime} \mathrm{L}$ with 0.44^{\prime} Overlap
51.0" Wide $+6.0^{\prime \prime}$ Spacing $=57.0^{\prime \prime}$ C-C Row Spacing

15 Chambers/Row x 7.12' Long +0.81' Cap Length $\times 2$ = 108.42' Row Length +12.0" End Stone $\times 2=$ 110.42' Base Length

9 Rows x 51.0" Wide $+6.0^{\prime \prime}$ Spacing x $8+12.0$ " Side Stone x $2=44.25^{\prime}$ Base Width
6.0 " Base +30.0 " Chamber Height +6.0 " Cover $=3.50$ Field Height

135 Chambers $\times 45.9$ cf $=6,201.9$ cf Chamber Storage
17,100.8 cf Field $-6,201.9$ cf Chambers $=10,898.9$ cf Stone $\times 40.0 \%$ Voids $=4,359.6$ cf Stone Storage
Chamber Storage + Stone Storage $=10,561.5 \mathrm{cf}=0.242$ af
Overall Storage Efficiency $=61.8 \%$
Overall System Size $=110.42^{\prime} \times 44.25^{\prime} \times 3.50^{\prime}$
135 Chambers
633.4 cy Field
403.7 cy Stone

Pond 104P: Inf Area 2
Hydrograph

HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond 104P: Inf Area 2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
46.50	4,886	0	49.15	4,886	8,797
46.55	4,886	98	49.20	4,886	8,927
46.60	4,886	195	49.25	4,886	9,050
46.65	4,886	293	49.30	4,886	9,167
46.70	4,886	391	49.35	4,886	9,276
46.75	4,886	489	49.40	4,886	9,382
46.80	4,886	586	49.45	4,886	9,485
46.85	4,886	684	49.50	4,886	9,584
46.90	4,886	782	49.55	4,886	9,682
46.95	4,886	879	49.60	4,886	9,780
47.00	4,886	977	49.65	4,886	9,877
47.05	4,886	1,182	49.70	4,886	9,975
47.10	4,886	1,387	49.75	4,886	10,073
47.15	4,886	1,591	49.80	4,886	10,171
47.20	4,886	1,795	49.85	4,886	10,268
47.25	4,886	1,999	49.90	4,886	10,366
47.30	4,886	2,202	49.95	4,886	10,464
47.35	4,886	2,404	50.00	4,886	10,561
47.40	4,886	2,605			
47.45	4,886	2,805			
47.50	4,886	3,005			
47.55	4,886	3,204			
47.60	4,886	3,402			
47.65	4,886	3,599			
47.70	4,886	3,795			
47.75	4,886	3,990			
47.80	4,886	4,184			
47.85	4,886	4,376			
47.90	4,886	4,568			
47.95	4,886	4,759			
48.00	4,886	4,948			
48.05	4,886	5,136			
48.10	4,886	5,323			
48.15	4,886	5,509			
48.20	4,886	5,692			
48.25	4,886	5,875			
48.30	4,886	6,056			
48.35	4,886	6,235			
48.40	4,886	6,413			
48.45	4,886	6,588			
48.50	4,886	6,762			
48.55	4,886	6,935			
48.60	4,886	7,105			
48.65	4,886	7,273			
48.70	4,886	7,438			
48.75	4,886	7,601			
48.80	4,886	7,761			
48.85	4,886	7,919			
48.90	4,886	8,074			
48.95	4,886	8,226			
49.00	4,886	8,374			
49.05	4,886	8,519			
49.10	4,886	8,660			

Summary for Pond A: DMH 1

Inflow Area = 26,350 sf, 45.43\% Impervious, Inflow Depth > 2.84" for 100-Year event
Inflow $=1.93$ cfs @ 12.10 hrs , Volume= $\quad 6,241 \mathrm{cf}$
Outflow = $1.93 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=\quad 6,241 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min

Primary =
1.93 cfs @ 12.10 hrs , Volume=

6,241 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 51.62' @ 12.13 hrs
Flood Elev= 51.37'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$45.60 '$	$12.0^{\prime \prime}$ Round Culvert
		$\mathrm{L}=189.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert= $45.60^{\prime} / 44.66^{\prime} \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=0.00 cfs @ 12.10 hrs HW=50.99' TW=51.04' (Dynamic Tailwater)
$廿_{1=C u l v e r t ~(~ C o n t r o l s ~} 0.00$ cfs)

Pond A: DMH 1

Hydrograph

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond A: DMH 1

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
45.60	0	50.90	0
45.70	0	51.00	0
45.80	0	51.10	0
45.90	0	51.20	0
46.00	0	51.30	0
46.10	0	51.40	0
46.20	0	51.50	0
46.30	0	51.60	0
46.40	0	51.70	0
46.50	0	51.80	0
46.60	0	51.90	0
46.70	0	52.00	0
46.80	0		
46.90	0		
47.00	0		
47.10	0		
47.20	0		
47.30	0		
47.40	0		
47.50	0		
47.60	0		
47.70	0		
47.80	0		
47.90	0		
48.00	0		
48.10	0		
48.20	0		
48.30	0		
48.40	0		
48.50	0		
48.60	0		
48.70	0		
48.80	0		
48.90	0		
49.00	0		
49.10	0		
49.20	0		
49.30	0		
49.40	0		
49.50	0		
49.60	0		
49.70	0		
49.80	0		
49.90	0		
50.00	0		
50.10	0		
50.20	0		
50.30	0		
50.40	0		
50.50	0		
50.60	0.70	0	
50.80			

Summary for Pond B: DMH2

Inflow Area $=\quad 47,730$ sf, 57.36% Impervious, Inflow Depth > 3.58" for 100-Year event
Inflow $=\quad 4.31$ cfs @ 12.09 hrs, Volume $=14,259 \mathrm{cf}$
Outflow = $4.31 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=14,259 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary $=\quad 4.31$ cfs @ 12.09 hrs, Volume $=14,259 \mathrm{cf}$
Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 51.82' @ 12.13 hrs
Flood Elev= 49.50'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	44.56^{\prime}	$12.0^{\prime \prime}$ Round Culvert
		$L=184.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet / Outlet Invert $=44.56^{\prime} / 43.64^{\prime} \quad \mathrm{S}=0.0050$	
		$\mathrm{n}=0.013$ Corrugated $\mathrm{CE}=0.900$	

Primary OutFlow Max=3.53 cfs @ 12.09 hrs HW=50.85' TW=48.58' (Dynamic Tailwater)
亡-1=Culvert (Outlet Controls 3.53 cfs @ 4.49 fps)
Pond B: DMH2

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond B: DMH2

Elevation feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
44.56	0	49.86	0
44.66	0	49.96	0
44.76	0	50.06	0
44.86	0	50.16	0
44.96	0	50.26	0
45.06	0	50.36	0
45.16	0	50.46	0
45.26	0	50.56	0
45.36	0	50.66	0
45.46	0	50.76	0
45.56	0	50.86	0
45.66	0	50.96	0
45.76	0	51.06	0
45.86	0	51.16	0
45.96	0	51.26	0
46.06	0	51.36	0
46.16	0	51.46	0
46.26	0	51.56	0
46.36	0	51.66	0
46.46	0		
46.56	0		
46.66	0		
46.76	0		
46.86	0		
46.96	0		
47.06	0		
47.16	0		
47.26	0		
47.36	0		
47.46	0		
47.56	0		
47.66	0		
47.76	0		
47.86	0		
47.96	0		
48.06	0		
48.16	0		
48.26	0		
48.36	0		
48.46	0		
48.56	0		
48.66	0		
48.76	0		
48.86	0		
48.96	0		
49.06	0		
49.16	0		
49.26	0		
49.36	0		
49.46	0		
49.56	0		
49.66	0		
49.76			
	0		

Summary for Pond C: DMH3

Inflow Area $=\quad 85,145$ sf, 43.74% Impervious, Inflow Depth > 3.90" for 100-Year event
Inflow $=8.49$ cfs @ 12.09 hrs , Volume $=\quad 27,652 \mathrm{cf}$
Outflow = $8.49 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 27,652 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min
Primary =
8.49 cfs @ 12.09 hrs, Volume= 27,652 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 48.99' @ 12.12 hrs
Flood Elev= 48.17'

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$43.54 '$	$18.0^{\prime \prime}$ Round Culvert
		$L=97.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$	
		Inlet $/$ Outlet Invert $=43.54^{\prime} / 43.05^{\prime} \quad \mathrm{S}=0.0051^{\prime} / /^{\prime} \mathrm{Cc}=0.900$	
		$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=3.33 cfs @ 12.09 hrs HW=48.55' TW=48.37' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 3.33 cfs @ 1.88 fps)

Pond C: DMH3

Hydrograph

Stage-Area-Storage for Pond C: DMH3

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
43.54	0	45.66	0	47.78	0
43.58	0	45.70	0	47.82	0
43.62	0	45.74	0	47.86	0
43.66	0	45.78	0	47.90	0
43.70	0	45.82	0	47.94	0
43.74	0	45.86	0	47.98	0
43.78	0	45.90	0	48.02	0
43.82	0	45.94	0	48.06	0
43.86	0	45.98	0	48.10	0
43.90	0	46.02	0	48.14	0
43.94	0	46.06	0	48.18	0
43.98	0	46.10	0	48.22	0
44.02	0	46.14	0	48.26	0
44.06	0	46.18	0	48.30	0
44.10	0	46.22	0	48.34	0
44.14	0	46.26	0	48.38	0
44.18	0	46.30	0	48.42	0
44.22	0	46.34	0	48.46	0
44.26	0	46.38	0	48.50	0
44.30	0	46.42	0	48.54	0
44.34	0	46.46	0	48.58	0
44.38	0	46.50	0	48.62	0
44.42	0	46.54	0	48.66	0
44.46	0	46.58	0	48.70	0
44.50	0	46.62	0	48.74	0
44.54	0	46.66	0	48.78	0
44.58	0	46.70	0	48.82	0
44.62	0	46.74	0	48.86	0
44.66	0	46.78	0	48.90	0
44.70	0	46.82	0	48.94	0
44.74	0	46.86	0	48.98	0
44.78	0	46.90	0	49.02	0
44.82	0	46.94	0	49.06	0
44.86	0	46.98	0	49.10	0
44.90	0	47.02	0	49.14	0
44.94	0	47.06	0	49.18	0
44.98	0	47.10	0	49.22	0
45.02	0	47.14	0	49.26	0
45.06	0	47.18	0	49.30	0
45.10	0	47.22	0	49.34	0
45.14	0	47.26	0	49.38	0
45.18	0	47.30	0	49.42	0
45.22	0	47.34	0	49.46	0
45.26	0	47.38	0		
45.30	0	47.42	0		
45.34	0	47.46	0		
45.38	0	47.50	0		
45.42	0	47.54	0		
45.46	0	47.58	0		
45.50	0	47.62	0		
45.54	0	47.66	0		
45.58	0	47.70	0		
45.62	0	47.74	0		

Summary for Pond D: DMH4

Inflow Area $=\quad 105,235$ sf, 47.50% Impervious, Inflow Depth > 4.31" for 100-Year event Inflow $=11.33 \mathrm{cfs}$ @ 12.09 hrs , Volume= $\quad 37,789 \mathrm{cf}$ Outflow = $11.33 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=37,789 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 11.33 cfs @ 12.09 hrs, Volume $=\quad 37,789 \mathrm{cf}$

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2
Peak Elev=48.79' @ 12.11 hrs
Flood Elev= 48.47'

Device	Routing	Invert	Outlet Devices
\#1	Primary	42.95'	18.0" Round Culvert
			$\mathrm{L}=165.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 42.95' / 42.13' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE , smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=10.51 cfs @ 12.09 hrs HW=48.32' TW=45.84' (Dynamic Tailwater)
—1 $^{\text {=Culvert }}$ (Outlet Controls 10.51 cfs @ 5.95 fps)

Pond D: DMH4

Stage-Area-Storage for Pond D: DMH4

$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$	Elevation (feet)	$\begin{array}{r} \text { Storage } \\ \text { (cubic-feet) } \end{array}$
42.95	0	45.07	0	47.19	0
42.99	0	45.11	0	47.23	0
43.03	0	45.15	0	47.27	0
43.07	0	45.19	0	47.31	0
43.11	0	45.23	0	47.35	0
43.15	0	45.27	0	47.39	0
43.19	0	45.31	0	47.43	0
43.23	0	45.35	0	47.47	0
43.27	0	45.39	0	47.51	0
43.31	0	45.43	0	47.55	0
43.35	0	45.47	0	47.59	0
43.39	0	45.51	0	47.63	0
43.43	0	45.55	0	47.67	0
43.47	0	45.59	0	47.71	0
43.51	0	45.63	0	47.75	0
43.55	0	45.67	0	47.79	0
43.59	0	45.71	0	47.83	0
43.63	0	45.75	0	47.87	0
43.67	0	45.79	0	47.91	0
43.71	0	45.83	0	47.95	0
43.75	0	45.87	0	47.99	0
43.79	0	45.91	0	48.03	0
43.83	0	45.95	0	48.07	0
43.87	0	45.99	0	48.11	0
43.91	0	46.03	0	48.15	0
43.95	0	46.07	0	48.19	0
43.99	0	46.11	0	48.23	0
44.03	0	46.15	0	48.27	0
44.07	0	46.19	0	48.31	0
44.11	0	46.23	0	48.35	0
44.15	0	46.27	0	48.39	0
44.19	0	46.31	0	48.43	0
44.23	0	46.35	0	48.47	0
44.27	0	46.39	0	48.51	0
44.31	0	46.43	0	48.55	0
44.35	0	46.47	0	48.59	0
44.39	0	46.51	0	48.63	0
44.43	0	46.55	0	48.67	0
44.47	0	46.59	0	48.71	0
44.51	0	46.63	0	48.75	0
44.55	0	46.67	0		
44.59	0	46.71	0		
44.63	0	46.75	0		
44.67	0	46.79	0		
44.71	0	46.83	0		
44.75	0	46.87	0		
44.79	0	46.91	0		
44.83	0	46.95	0		
44.87	0	46.99	0		
44.91	0	47.03	0		
44.95	0	47.07	0		
44.99	0	47.11	0		
45.03	0	47.15	0		

Summary for Pond E: DMH5

Inflow Area $=\quad 157,230$ sf, 45.56% Impervious, Inflow Depth > 4.34" for 100-Year event Inflow $=17.28$ cfs @ 12.09 hrs, Volume $=\quad 56,806 \mathrm{cf}$ Outflow = $17.28 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 56,806 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary = 17.28 cfs @ 12.09 hrs, Volume $=\quad 56,806$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.98' @ 12.57 hrs
Flood Elev= 50.16'

Device	Routing	Invert	Outlet Devices
\#1	Primary	42.03'	24.0" Round Culvert
			$\mathrm{L}=264.0{ }^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 42.03' / 40.71' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=12.91 cfs @ 12.09 hrs HW=45.84' TW=44.58' (Dynamic Tailwater)
—1=Culvert (Outlet Controls 12.91 cfs @ 4.11 fps)

Pond E: DMH5

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond E: DMH5

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
42.03	0	47.33	0
42.13	0	47.43	0
42.23	0	47.53	0
42.33	0	47.63	0
42.43	0	47.73	0
42.53	0	47.83	0
42.63	0	47.93	0
42.73	0	48.03	0
42.83	0	48.13	0
42.93	0	48.23	0
43.03	0	48.33	0
43.13	0	48.43	0
43.23	0	48.53	0
43.33	0	48.63	0
43.43	0	48.73	0
43.53	0	48.83	0
43.63	0	48.93	0
43.73	0	49.03	0
43.83	0	49.13	0
43.93	0	49.23	0
44.03	0	49.33	0
44.13	0	49.43	0
44.23	0	49.53	0
44.33	0	49.63	0
44.43	0	49.73	0
44.53	0	49.83	0
44.63	0	49.93	0
44.73	0	50.03	0
44.83	0	50.13	0
44.93	0		
45.03	0		
45.13	0		
45.23	0		
45.33	0		
45.43	0		
45.53	0		
45.63	0		
45.73	0		
45.83	0		
45.93	0		
46.03	0		
46.13	0		
46.23	0		
46.33	0		
46.43	0		
46.53	0		
46.63	0		
46.73	0		
46.83	0		
46.93	0		
47.03	0		
47.13	0		
47.23	0		

Summary for Pond F: CDS

Inflow Area $=\quad 157,230$ sf, 45.56% Impervious, Inflow Depth > 4.34" for 100-Year event Inflow $=17.28$ cfs @ 12.09 hrs , Volume $=\quad 56,806 \mathrm{cf}$ Outflow = $17.28 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=\quad 56,806 \mathrm{cf}$, Atten= $=0 \%$, Lag= 0.0 min Primary $=17.28$ cfs @ 12.09 hrs, Volume $=\quad 56,806$ cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 46.94' @ 12.52 hrs
Flood Elev= 49.00'

Device	Routing	Invert	Outlet Devices
\#1	Primary	40.61'	24.0" Round Culvert
			$\mathrm{L}=126.0^{\prime}$ CPP, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 40.61' / 39.98' S=0.0050 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=16.91 cfs @ 12.09 hrs HW=44.58' TW=43.20' (Dynamic Tailwater)
—1 $^{\text {=Culvert }}$ (Outlet Controls 16.91 cfs @ 5.38 fps)
Pond F: CDS
Hydrograph

Prepared by Millennium Engineering, Inc.
Printed 2/8/2023
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond F: CDS

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
40.61	0	45.91	0
40.71	0	46.01	0
40.81	0	46.11	0
40.91	0	46.21	0
41.01	0	46.31	0
41.11	0	46.41	0
41.21	0	46.51	0
41.31	0	46.61	0
41.41	0	46.71	0
41.51	0	46.81	0
41.61	0	46.91	0
41.71	0	47.01	0
41.81	0	47.11	0
41.91	0	47.21	0
42.01	0	47.31	0
42.11	0	47.41	0
42.21	0	47.51	0
42.31	0	47.61	0
42.41	0	47.71	0
42.51	0	47.81	0
42.61	0	47.91	0
42.71	0	48.01	0
42.81	0	48.11	0
42.91	0	48.21	0
43.01	0	48.31	0
43.11	0	48.41	0
43.21	0	48.51	0
43.31	0	48.61	0
43.41	0	48.71	0
43.51	0	48.81	0
43.61	0	48.91	0
43.71	0		
43.81	0		
43.91	0		
44.01	0		
44.11	0		
44.21	0		
44.31	0		
44.41	0		
44.51	0		
44.61	0		
44.71	0		
44.81	0		
44.91	0		
45.01	0		
45.11	0		
45.21	0		
45.31	0		
45.41	0		
45.51	0		
45.61	0		
45.71	0		
45.81	0		

Summary for Pond G: CDS

Inflow Area $=\quad 45,255$ sf, 1.33% Impervious, Inflow Depth > 5.04" for 100-Year event Inflow $=5.79$ cfs @ 12.09 hrs, Volume $=19,012 \mathrm{cf}$ Outflow = $5.79 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=19,012 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min Primary = 5.79 cfs @ 12.09 hrs, Volume= 19,012 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= $0.05 \mathrm{hrs} / 2$
Peak Elev= 51.39' @ 12.12 hrs
Flood Elev= 50.70'

Device	Routing	Invert	Outlet Devices
\#1	Primary	46.90'	12.0" Round Culvert
			$\mathrm{L}=24.0^{\prime} \quad \mathrm{CPP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 46.90' / 46.70' S=0.0083 '/' Cc= 0.900
			$\mathrm{n}=0.013$ Corrugated PE , smooth interior, Flow Area $=0.79 \mathrm{sf}$

Primary OutFlow Max=5.65 cfs @ 12.09 hrs HW=51.12' TW=48.89' (Dynamic Tailwater)
-1=Culvert (Inlet Controls 5.65 cfs @ 7.20 fps)
Pond G: CDS

Prepared by Millennium Engineering, Inc.
HydroCAD® 10.00-25 s/n 02736 © 2019 HydroCAD Software Solutions LLC
Stage-Area-Storage for Pond G: CDS

$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
46.90	0	49.55	0
46.95	0	49.60	0
47.00	0	49.65	0
47.05	0	49.70	0
47.10	0	49.75	0
47.15	0	49.80	0
47.20	0	49.85	0
47.25	0	49.90	0
47.30	0	49.95	0
47.35	0	50.00	0
47.40	0	50.05	0
47.45	0	50.10	0
47.50	0	50.15	0
47.55	0	50.20	0
47.60	0	50.25	0
47.65	0	50.30	0
47.70	0	50.35	0
47.75	0	50.40	0
47.80	0	50.45	0
47.85	0	50.50	0
47.90	0	50.55	0
47.95	0	50.60	0
48.00	0	50.65	0
48.05	0	50.70	0
48.10	0	50.75	0
48.15	0	50.80	0
48.20	0	50.85	0
48.25	0	50.90	0
48.30	0	50.95	0
48.35	0	51.00	0
48.40	0	51.05	0
48.45	0	51.10	0
48.50	0	51.15	0
48.55	0	51.20	0
48.60	0	51.25	0
48.65	0	51.30	0
48.70	0	51.35	0
48.75	0		
48.80	0		
48.85	0		
48.90	0		
48.95	0		
49.00	0		
49.05	0		
49.10	0		
49.15	0		
49.20	0		
49.25	0		
49.30	0		
49.35	0		
49.40	0		
49.45	0		
49.50	0		

Prepared by Millennium Engineering, Inc.

Summary for Link 100L: Bordering Vegetated Wetland

Inflow Area $=344,404$ sf, 0.17% Impervious, Inflow Depth > 1.65" for 100-Year event Inflow $=10.58 \mathrm{cfs} @ 12.30 \mathrm{hrs}$, Volume= $\quad 47,327 \mathrm{cf}$ Primary $=10.58 \mathrm{cfs}$ @ 12.30 hrs , Volume $=\quad 47,327 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Link 100L: Bordering Vegetated Wetland

12.0 APPENDIX E - PROPRIETARY BMP DOCUMENTATION

Project:	163 Elm Street	Salisbury, MA
Location:	Sal	
Prepared For:	Millennium Engineering	ENGINEERED SOLUTIONS

Purpose: \quad To calculate the water quality flow rate (WQF) over a given site area. In this situation the WQF is derived from the first 1 " of runoff from the contributing impervious surface.

Reference: Massachusetts Dept. of Environmental Protection Wetlands Program / United States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

Procedure: Determine unit peak discharge using Figure 1 or 2 . Figure 2 is in tabular form so is preferred. Using the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu is expressed in the following units: $\mathrm{cfs} / \mathrm{mi}^{2} /$ watershed inches (csm/in).

Compute Q Rate using the following equation:

$$
Q=(q u)(A)(W Q V)
$$

where:
$Q=$ flow rate associated with first 1" of runoff
qu = the unit peak discharge, in csm/in.
$A=$ impervious surface drainage area (in square miles)
WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. $($ acres $)$	A (miles 2)	$\mathbf{t}_{\mathbf{c}}$ $(\mathbf{m i n})$	$\mathbf{t}_{\boldsymbol{c}}$ $(\mathbf{h r})$	WQV (in)	qu (csm/in.)	Q (cfs)
WQU 1 (Southwest)	1.42	0.0022188	6.0	0.100	1.00	774.00	1.72
WQU 2 (Northeast)	0.80	0.0012472	6.0	0.100	1.00	774.00	0.97

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD 163 ELM STREET SALISBURY, MA					
Area Weighted C CDS Model	$\begin{gathered} 1.42 \mathrm{ac} \\ 0.9 \\ 6 \mathrm{~min} \\ 2020-5 \end{gathered}$		CDS	nit Site Designation Rainfall Station \# Treatment Capacity	$\begin{gathered} \text { CDS } \\ 67 \\ 2.2 \mathrm{cfs} \end{gathered}$
$\begin{aligned} & \frac{\text { Rainfall }}{\text { Intensity }} \\ & \frac{\text { (in } / \mathrm{hr})}{} \end{aligned}$	$\frac{\text { Percent Rainfall }}{\text { Volume }^{1}}$	Cumulative Rainfall Volume	$\frac{\text { Total Flowrate }}{\text { (cfs) }}$	$\frac{\text { Treated Flowrate }}{\text { (cfs) }}$	Incremental Removal (\%)
0.08	41.0\%	41.0\%	0.10	0.10	38.6
0.16	23.9\%	64.9\%	0.20	0.20	21.7
0.24	11.5\%	76.5\%	0.31	0.31	10.1
0.32	7.4\%	83.9\%	0.41	0.41	6.3
0.40	4.4\%	88.3\%	0.51	0.51	3.6
0.48	2.9\%	91.2\%	0.61	0.61	2.3
0.56	1.8\%	93.0\%	0.72	0.72	1.3
0.64	1.2\%	94.2\%	0.82	0.82	0.8
0.72	1.6\%	95.8\%	0.92	0.92	1.1
0.80	0.8\%	96.6\%	1.02	1.02	0.5
1.00	0.6\%	97.1\%	1.28	1.28	0.3
1.40	1.4\%	98.6\%	1.79	1.79	0.6
1.80	0.9\%	99.5\%	2.30	2.20	0.3
2.20	0.5\%	100.0\%	2.81	2.20	0.1
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
0.00	0.0\%	100.0\%	0.00	0.00	0.0
87.7 Removal Efficiency Adjustment ${ }^{2}=$ 0.0% Predicted \% Annual Rainfall Treated $=$ 99.8% Predicted ${ }^{2}$ Net Annual Load Removal Efficiency $=$ $\mathbf{8 7 . 7 \%}$					
1 - Based on 7 years of data from NCDC station \#3276, Groveland, Essex County, MA 2 - Reduction due to use of 60 -minute data for a site that has a time of concentration less than 30 -minutes.					

13.0 APPENDIX F - TSS REMOVAL SPREADSHEET
INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings 3. To complete Chart Column D, multiple Column B value within Row \times Column C value within Row 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row 5. Total TSS Removal = Sum All Values in Column D
Location: Infiltration System \#2

2. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table 2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row 4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row 5. Total TSS Removal $=$ Sum All Values in Column D

14.0 APPENDIX G - NRCS SOIL DATA

SOIL SUITABILITY ASSESSMENT REPORT COMMONWEALTH OF MASSACHUSETTS SALISBURY, MASSACHUSETTS

SITE INFORMATION

Street Address: 163 Elm Street Town: Salisbury State: Massachusetts Zip Code: $\underline{01952 \text { County: Essex }}$ Land Use: Commercial Latitude: $\sim 42^{\circ} 50^{\prime} 33.19^{\prime \prime} \mathrm{N}$ Longitude: $\sim 70^{\circ} 53^{\prime} 22.29^{\prime \prime} \mathrm{W}$

PUBLISHED SOIL DATA AND MAP UNIT DESCRIPTION

Physiographic Division: Appalachian Highlands Physio. Province: New England Physio. Section: Seaboard lowland section Soil survey area: Essex County, Massachusetts, Northern Part Series name: 255A/D - Windsor LS, 0-15\% slopes
Order: Entisol Suborder: Psamments Family: Mixed, mesic, Typic Udipsamments
Soil moisture regime: Udic Soil temperature regime: Mesic Runoff class: low Hydric soil rating: No
Soil hydric or upland: Upland Average depth to water table: $\geq 80^{\prime \prime}$ Depth to restrictive feature: ≥ 80 "
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (~ 4.5 ")
Drainage Class: Excessively drained
Hydrologic Soil Group: \mathbf{A}
Ksat: Moderately high to very high (1.42-99.90 in/hr)

WETLAND AREA \& USGS WELL MEASUREMENTS

National Wetland Inventory Map: NA Wetlands Conservancy Program: NA Bordering vegetative wetland: NA Current Water Resource Condition (USGS): Well Site \# 424841071004101-MA-HLW 23 Haverhill, MA., Well depth: 15.10 feet Land surface altitude: 100.00 feet above NGVD29 Latitude: $\sim 42^{\circ} 48^{\prime} 41.8^{\prime \prime} \mathrm{N}$ Longitude: $\sim 71^{\circ} 00^{\prime} 41.7^{\prime \prime}$ Most recent data value: 10.74 ' on $03 / 22 / 22$ (depth to water level in feet below land surface) Range: Normal

SURFICIAL GEOLOGY:

Geologic parent material: Loose, sandy, glaciofluvial deposits Geomorphic component: Outwash plain Slope aspect: Level to gently sloping Landform position (2D): Flat Landform position (3D): Tread Slope gradient: $\underline{\sim 00-05 \%}$ Down slope shape: Linear Across slope shape: Linear Slope complexity: Simple Bedrock outcropping in vicinity: None observed Glacial erratics in vicinity: None observed Bedrock Type: Newburyport complex: Gray, medium-grained Tonalite and Granodiorite

TP22-1 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Landscape: Upland

Weather: Overcast, $35^{\circ}-40^{\circ} \mathrm{F}$, East breeze, light rain.
Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area
Property line: 10^{+}feet Drainage way: 50^{+}feet Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+} \text {feet }}$

SOIL PROFILE - TP22-1

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.		
$00^{\prime \prime} \rightarrow 18 "$	C^{\wedge}	Sandy Loam Fill mixture	10YR 2/1 black	none observed			Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
:---							
$18 " \rightarrow 65^{\prime \prime}$							
2 2C							
Sand							

Depth to bedrock: $>65^{\prime \prime} \quad$ Seasonal High Groundwater Table: 38" Apparent water: 42"

TP22-1 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 38" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical

Hardness: $\underline{\text { Soft }}$	Boundary: $\underline{\text { Clear }}$	Abundance: Many Reduction color:	Size: $\underline{\text { Fine and medium }} \quad$ Contrast: Prominent
Concentration color: $10 \mathrm{R} 4 / 8$ red	Moisture state: $\underline{\text { Damp to wet }}$		

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
38" inches below grade
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
42" inches below grade
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: 3.92°
Depth of naturally occurring pervious material in TP22-1
Upper boundary: $18^{\prime \prime}$
Lower boundary: 65"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 eMR $15 . g 17$.
\#1848
Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

03/24/2022
Date of soil testing

TP22-2 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Landscape: Upland
Slope aspect: Level Slope (\%): 00-01\% Slope complexity: Simple

Land Cover: Gravel parking area
 Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

$\underline{\text { SOIL PROFILE }-~ T P 22-2 ~}$

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00^{\prime \prime} \rightarrow 19 \prime$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR} 2 / 1}$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$19 \prime \prime$ ' 6 "	2 C	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 37 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at 37 "; apparent water observed at 40 "; no bedrock refusal at test hole depth.

TP22-2 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 37" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R $4 / 8$ red \quad Reduction color: __ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

37"
40"
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad 3.83^{ }$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.017

Alexander F. Parker

October 1998

Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design $\underline{03 / 24 / 2022}$
Town of Salisbury Board of Health Witness

TP22-3 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Property line: 10^{+}feet Drainage way: 50^{+}feet Drinking water well: 100^{+}feet Abutting septic system: 50^{+}feet

SOIL PROFILE - TP22-3

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 17 "$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR}} 2 / 1$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$17 \prime \prime$ ' 7 "	2 C	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 36 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at $36^{\prime \prime}$; apparent water observed at $40^{\prime \prime}$; no bedrock refusal at test hole depth.

Depth to bedrock: >67" Seasonal High Groundwater Table: 36" Apparent water: 40"

TP22-3 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{40 " \text { (below land surface) }}$ Depth to stabilized apparent water: $\underline{40 "}$ (below land surface)
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 36" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red
Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

36"
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: 4.16

Upper boundary: 17"
Lower boundary: 67"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CAR $15: Q 17$.

Alexander F. Parker
October 1998
Date of License issuance
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design $\quad \underline{03 / 24 / 2022}$
Town of Salisbury Board of Health Witness

TP22-4 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022 Weather: Overcast, $35^{\circ}-40^{\circ} \mathrm{F}$, East breeze, light rain.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $00-01 \%$ Slope complexity: Simple Land Cover: Gravel parking area
Property line: $\underline{10^{+} \text {feet } \quad \text { Drainage way: } 50^{+} \text {feet Drinking water well: } 100^{+} \text {feet Abutting septic system: } \underline{50^{+}} \text {feet }}$
Wetlands: $\underline{10^{+} \text {feet } \quad \text { Public water supply reservoir: } 400^{+} \text {feet Tributary to reservoir: } \underline{200^{+}} \text {feet }}$

SOIL PROFILE - TP22-4

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00^{\prime \prime} \rightarrow 12 \prime$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR}} 2 / 1$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$12 " \rightarrow 70 "$	2 C	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 37 " \\ (m, 1-2, p) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at 37 "; apparent water observed at 43 "; no bedrock refusal at test hole depth.

TP22-4 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: 43 " (below land surface) Depth to stabilized apparent water: $\underline{43 " \text { (below land surface) }}$
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 37"' (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R $4 / 8$ red \quad Reduction color: ___ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
$37^{\prime \prime}$ inches below grade
43" inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: 4.16

Depth of naturally occurring pervious material in TP22-4
Upper boundary: 17"
Lower boundary: 67"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

03/24/2022
Date of soil testing

TP22-5 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022 Weather: Overcast, $35^{\circ}-40^{\circ} \mathrm{F}$, East breeze, light rain.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area
Property line: 10^{+}feet Drainage way: $\underline{50^{+} \text {feet } \quad \text { Drinking water well: } 100^{+} \text {feet Abutting septic system: } \underline{50^{+}} \text {feet }}$
Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE \downarrow TP22-5

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 11 "$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR}} 2 / 1$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$11 " \rightarrow 65 "$	2 C	Sand	$\begin{gathered} 2.5 \mathrm{Y} 5 / 3 \\ \text { light olive } \\ \text { brown } \end{gathered}$	$\begin{gathered} 40 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at $40^{\prime \prime}$; apparent water observed at $46^{\prime \prime}$; no bedrock refusal at test hole depth.

TP22-5 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $46^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: 46 " (below land surface)
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 40" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
$40^{\prime \prime}$ inches below grade
46" inches below grade
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\downarrow \underline{4.50^{\circ}}$
Depth of naturally occurring pervious material in TP22-5
Upper boundary: 11"
Lower boundary: 65"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. L further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.017

Alexander F. Parker
October 1998

Alexander F. Parker	ce
Massachusetts Soil Evaluator \& License number	
Unofficial testing for drainage design	03/24/2022
Town of Salisbury Board of Health Witness	Date of soil testing

TP22-6 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area
Property line: $\underline{10^{+} \text {feet }}$ Drainage way: $\underline{50^{+} \text {feet }}$ Drinking water well: $\underline{100^{+} \text {feet } \quad \text { Abutting septic system: } \underline{50^{+}} \text {feet }}$
Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet \quad Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE \downarrow TP22-6

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 21 "$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR}} 2 / 1$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 10-15\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$21 " \rightarrow 81 "$	2 C	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 52 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at 52 "; apparent water observed at 71 "; no bedrock refusal at test hole depth.

TP22-6 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:
Apparent water seeping from pit face: 71 " (below land surface) \quad Depth to stabilized apparent water: 71" (below land surface) Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:
Depth of Estimated Seasonal High Groundwater Table: 52" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: __ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
52" inches below grade

Observed depth to stabilized phreatic water:
71" inches below grade
__ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\boldsymbol{5 . 0 0 ^ { \prime }}$
Depth of naturally occurring pervious material in TP22-6 Upper boundary: 21"
Lower boundary: $81^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310CAR-15.017.

October 1998
Alexander F. Parker
Date of License issuance
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
03/24/2022
Town of Salisbury Board of Health Witness
Date of soil testing

TP22-7 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Weather: Overcast, $35^{\circ}-40^{\circ} \mathrm{F}$, East breeze, light rain.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $00-01 \%$ Slope complexity: Simple Land Cover: Gravel parking area Property line: $\underline{10^{+} \text {feet } \quad \text { Drainage way: } \underline{50^{+}} \text {feet } \quad \text { Drinking water well: } 100^{+} \text {feet Abutting septic system: } \underline{50^{+}} \text {feet }}$ Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+}}$feet

SOIL PROFILE - TP22-7

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 08 "$	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$08^{\prime \prime} \rightarrow 18^{\prime \prime}$	B_{w}	Loamy Sand	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; diffuse wavy boundary.
$18^{\prime \prime} \rightarrow 88 \prime$	2 C	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 60 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at $60^{\prime \prime}$; apparent water observed at $79 "$; no bedrock refusal at test hole depth.

Depth to bedrock: $\geq 88^{\prime \prime} \quad$ Seasonal High Groundwater Table: 60" \quad Apparent water: 79"

TP22-7 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $79^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: $\underline{79 \text { " }}$ (below land surface)
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 60" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: __ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
60" inches below grade
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad \underline{6.66^{\prime}}$
Depth of naturally occurring pervious material in TP22-7
Upper boundary: $08^{\prime \prime}$
Lower boundary: 88"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR-15.017.

October 1998
Alexander F. Parker
Date of License issuance
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design 03/24/2022
Town of Salisbury Board of Health Witness Date of soil testing

TP22-8 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022 Weather: Overcast, $35^{\circ}-40^{\circ}$ F, East breeze, light rain.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Property line: 10^{+}feet Drainage way: 50^{+}feet Drinking water well: $\underline{100^{+} \text {feet } \quad \text { Abutting septic system: } 50^{+} \text {feet }}$ Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE \downarrow TP22-8

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 \prime \prime$ 08"	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$08 \prime \rightarrow 19 "$	$\mathrm{B}_{\text {w }}$	Sandy Loam	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; diffuse wavy boundary.
$19 \prime \prime \rightarrow 75 \prime$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 46 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; slightly sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; very silty; saturated matrix; seasonal high-water table observed at 46"; apparent water observed at $55^{\prime \prime}$; no bedrock refusal at test hole depth.

TP22-8 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $55^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: $55^{\prime \prime}$ (below land surface) Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 46" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: _Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
46" inches below grade

Observed depth to stabilized phreatic water:
55" inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: \quad 5.58’
Depth of naturally occurring pervious material in TP22-8
Upper boundary: $08^{\prime \prime}$
Lower boundary: $7{ }^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. Xfurther certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.017.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Date of License issua Town of Salisbury Board of Health Witness $\underline{03 / 24 / 2022}$

TP22-9 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: March 24, 2022
Landscape: Upland
Weather: Overcast, $35^{\circ}-40^{\circ}$ F, East breeze, light rain.
Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area

Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+}}$feet

SOIL PROFILE - TP22-9

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" $\rightarrow 09 \prime$	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$09 " \rightarrow 14 "$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; diffuse wavy boundary.
$14 " \rightarrow 42 "$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 40 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; slightly sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; very silty; saturated matrix; seasonal high-water table observed at $40^{\prime \prime}$; apparent water observed at $42 "$; bedrock refusal at test hole depth.
R at 42"					Bedrock refusal at depth

Depth to bedrock: 42" Seasonal High Groundwater Table: 40" Apparent water: 42"

TP22-9 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{42 " \text { (below land surface) }}$ Depth to stabilized apparent water: $\underline{42 "}$ (below land surface) Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 40" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: _Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

42" inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $2.75{ }^{\prime}$

Depth of naturally occurring pervious material in TP22-9

Upper boundary: 09"
Lower boundary: 42"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct
evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR-15.017. Ifexther certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.017.

Alexander F. Parker
October 1998

Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design \quad 03/24/2022
Town of Salisbury Board of Health Witness
Date of soil testing

TP22-10 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022 Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landscape: Upland
Landform: Marine terrace Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
Property line: $\underline{10^{+} \text {feet }}$ Drainage way: $\underline{50^{+} \text {feet }}$ Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+} \text {feet }}$

SOIL PROFILE - TP22-10

Depth below land surface (inches)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Soil } \\ \text { Horizon/ } \\ \text { Layer } \end{array} \\ \hline \end{array}$	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	$\begin{aligned} & \text { Redoxomorphic } \\ & \text { Features } I \\ & \text { ESHGWT } \end{aligned}$	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00^{\prime \prime} \rightarrow 08 \prime$	A	Sandy Loam	$\begin{gathered} \text { yery dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundroy free of clasts; clear wavy boundary.
08" $\rightarrow 21$ "	B_{w}	Sandy Loam	$\begin{gathered} \text { 10YR 4/4 } \\ \text { dark yellowish } \\ \text { brown } \end{gathered}$	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$21 " \rightarrow 72 \prime$	2 C	Silty Clay Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 40 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 21 "; apparent water observed at $27^{\prime \prime}$; no bedrock refusal at test hole depth.

Depth to bedrock: \geq 72" Seasonal High Groundwater Table: 21 " Apparent water: 27"

TP22-10 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $27^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 21" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red
Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

21" inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $1.08^{ }$
Depth of naturally occurring pervious material in TP22-10
Upper boundary: $08^{\prime \prime}$
Lower boundary: $21^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022
Date of soil testing

TP22-11 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022
Landscape: Upland
Slope aspect: Level

Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landform: Marine terrace Position on landscape: Tread/ flat

Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
Property line: $\underline{10^{+} \text {feet }}$ Drainage way: $\underline{50^{+} \text {feet }}$ Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+}}$feet
Wetlands: 10^{+}feet
Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE $>$ TP22-11

Depth below land surface (inches)	Soil Horizon Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" \rightarrow 04"	A	Sandy Loam	$\begin{gathered} \text { 10YR } 3 / 2 \\ \text { very dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$04 " \rightarrow 12 "$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$12 " \rightarrow 48 "$	$2 \mathrm{C}_{1}$	Loamy Sand very fine	$\underset{\text { dark gray }}{2.5 \mathrm{Y} 4 / 1}$	none observed	Loose; structureless; mixed fine-to-very fine-grained mineral content; thinly stratified; damp matrix; non-sticky; non-plastic; poorly graded; free of clasts; gradual wavy boundary.
$48^{\prime \prime} \rightarrow 80 \prime$	$2 \mathrm{C}_{2}$	Sandy Loam	2.5Y 5/4 light olive brown	$\begin{gathered} 54 " \\ (\mathrm{c}, 1-2, \mathrm{p}) \\ 10 \mathrm{YR} 7 / 1 \\ 5 \mathrm{YR} 5 / 8 \end{gathered}$	Friable; massive structure of moderate grade; mixed fine-tomedium grained mineral content; crudely stratified; damp matrix; non-sticky; non-plastic; well graded; approximately $10-15 \%$ subangular to sub-rounded gravel and 05% sub-rounded to angular cobble content of mixed lithology; redoximorphic features observed at $54 "$; apparent water observed at 60 "; no bedrock refusal at test hole depth.

Depth to bedrock: $>80^{\prime}$
Seasonal High Groundwater Table: 54"
Apparent water: 60 "

TP22-11 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{60 \text { " (below land surface) Depth to stabilized apparent water: }}$ \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 54" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: _ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
54"
$60^{\prime \prime}$ inches below grade
__ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad 6.33^{\circ}$

Depth of naturally occurring pervious material in TP22-11
Upper boundary: 04 "
Lower boundary: 80"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR-15.017.

Date of License issuance
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
05/05/2022
Town of Salisbury Board of Health Witness
Date of soil testing

TP22-12 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022
Landscape: Upland
Weather: Overcast, $45^{\circ}-50^{\circ}$ F, East breeze, light rain.
Landform: Marine terrace Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
Property line: $\underline{10^{+} \text {feet }}$ Drainage way: $\underline{50^{+} \text {feet }}$ Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+} \text {feet }}$

SOIL PROFILE - TP22-12

Depth below land surface (inches)	Soil Horizon Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 05 "$	A	Sandy Loam	$\begin{gathered} \text { 10YR } 3 / 2 \\ \text { very dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$08 \prime \rightarrow 19 "$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$21 " \rightarrow 65 "$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 19 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 19 "; apparent water observed at $30^{\prime \prime}$; no bedrock refusal at test hole depth.

Depth to bedrock: $>72^{\prime \prime}$

TP22-12 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $30^{\prime \prime \prime}$ (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:
Depth of Estimated Seasonal High Groundwater Table: 19" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red
Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION
Observed depth to redoximorphic features: $\quad \underline{30 "}$ inches below grade
Observed water weeping from side of deep hole: $19^{\prime \prime}$ inches below grade
Observed depth to stabilized phreatic water:
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad 5.0^{\circ}$
Depth of naturally occurring pervious material in TP22-12
Upper boundary: $05^{\prime \prime}$
Lower boundary: 65"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CAAR 15.017.

Alexander F. Parker

October 1998

Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design $\quad \underline{05 / 05 / 2022}$
Town of Salisbury Board of Health Witness
Date of soil testing

TP22-13 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022
Landscape: Upland
Slope aspect: Level
Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landform: Marine terrace Position on landscape: Tread/ flat

Property line: 10^{+}feet Drainage way: 50^{+}feet Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+} \text {feet }}$
Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE - TP22-13

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" \rightarrow 07"	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
07" $\rightarrow 23 \prime$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$23 " \rightarrow 61 "$	$2 \mathrm{C}_{1}$	Sandy Loam	2.5Y 5/4 light olive brown	none observed	Friable; massive structure of moderate grade; mixed fine-tomedium grained mineral content; crudely stratified; damp matrix; non-sticky; non-plastic; well graded; approximately $10-15 \%$ subangular to sub-rounded gravel and 05% sub-rounded to angular cobble content of mixed lithology; abrupt smooth boundary.
$61 " \rightarrow 80 "$	$2 \mathrm{C}_{2}$	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 19 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ \text { 10R } 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 61"; apparent water observed at $65^{\prime \prime}$; no bedrock refusal at test hole depth.

Depth to bedrock: $\geq 80 "$ Seasonal High Groundwater Table: 61" Apparent water: $\underline{60^{\prime \prime}}$

TP22-13 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{65 "}^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: ___ (below land surface)
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:
Depth of Estimated Seasonal High Groundwater Table: 61" (blow land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red
Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole: Observed depth to stabilized phreatic water:

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad \underline{6.08^{\prime}}$
Depth of naturally occurring pervious material in TP22-13

Upper boundary: 07"
Lower boundary: 80 "

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct
evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310-EMR 15.017 .

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022
Date of soil testing

TP22-14 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022 Weather: Overcast, $45^{\circ}-50^{\circ}$ F, East breeze, light rain.
Landscape: Upland Landform: Marine terrace Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
Property line: $\underline{10^{+} \text {feet } \quad \text { Drainage way: } 50^{+} \text {feet } \quad \text { Drinking water well: } 100^{+} \text {feet Abutting septic system: } \underline{50^{+}} \text {feet }}$
Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE - TP22-14

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" $\rightarrow 09 \prime$	A	Sandy Loam	$\begin{gathered} \text { 10YR } 3 / 2 \\ \text { very dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$09 " \rightarrow 17 \prime$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$17 \prime \prime 56 \prime$	$2 \mathrm{C}_{1}$	Sandy Loam	2.5Y 5/4 light olive brown	none observed	Friable; massive structure of moderate grade; mixed fine-tomedium grained mineral content; crudely stratified; damp matrix; non-sticky; non-plastic; well graded; approximately $10-15 \%$ subangular to sub-rounded gravel and 05% sub-rounded to angular cobble content of mixed lithology; abrupt smooth boundary.
$56 " \rightarrow 79 "$	$2 \mathrm{C}_{2}$	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 34 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 34 "; apparent water observed at 41 "; no bedrock refusal at test hole depth.

Depth to bedrock: $>79^{\prime \prime}$
Seasonal High Groundwater Table: 34"
Apparent water: 41"

TP22-14 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{41 \text { " (below land surface) } \text { Depth to stabilized apparent water: ___ (below land surface) }}$
Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 34" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

34" inches below grade
41" inches below grade
__ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: \quad 5.83

Depth of naturally occurring pervious material in TP22-14

Upper boundary: 09"
Lower boundary: 79"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310 EMR 15.017.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022

Date of soil testing

TP22-15 DEEP OBSERVATION HOLE

 163 Elm Street, Salisbury, Massachusetts

 163 Elm Street, Salisbury, Massachusetts}

Date: May 05, 2022
Landscape: Upland
Slope aspect: Level
Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landform: Marine terrace Position on landscape: Tread/ flat
Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
Property line: $\underline{10^{+} \text {feet }}$ Drainage way: $\underline{50^{+} \text {feet }}$ Drinking water well: $\underline{100^{+} \text {feet } \quad \text { Abutting septic system: } \underline{50^{+}} \text {feet }}$
Wetlands: 10^{+}feet
Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE \downarrow TP22-15

Depth below land surface (inches)	Soil Horizon Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 05 "$	A	Sandy Loam	$\begin{gathered} \text { 10YR } 3 / 2 \\ \text { very dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; abrupt smooth boundary.
05" $\rightarrow 79 "$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 10 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 10 "; apparent water observed at $13 "$; no bedrock refusal at test hole depth.

Depth to bedrock: $>79 \prime \quad$ Seasonal High Groundwater Table: $10^{\prime \prime} \quad$ Apparent water: 13"

TP22-15 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: 13 " (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 10" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent

Concentration color: 10R $4 / 8$ red Reduction color: __ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

10"
inches below grade
13"
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $5.83{ }^{\prime}$

Depth of naturally occurring pervious material in TP22-15 Upper boundary: $\underline{09 \text { " }}$ Lower boundary: 79"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CDR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310 EMR 15.017 .

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022
Date of soil testing

TP22-16 DEEP OBSERVATION HOLE

 163 Elm Street, Salisbury, Massachusetts

 163 Elm Street, Salisbury, Massachusetts}

Date: May 05, 2022 Weather: Overcast, $45^{\circ}-50^{\circ}$ F, East breeze, light rain.
Landscape: Upland Landform: Marine terrace Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $00-07 \%$ Slope complexity: Simple Land Cover: Wooded

Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE - TP22-16

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" \rightarrow 09"	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$09 " \rightarrow 12 "$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$12 " \rightarrow 43 "$	2 C	Sandy Loam	2.5Y 5/4 light olive brown	$\begin{gathered} 42 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ \text { 10R 4/8 } \end{gathered}$	Friable; massive structure of moderate grade; mixed fine-tomedium grained mineral content; crudely stratified; damp matrix; non-sticky; non-plastic; well graded; approximately $10-15 \%$ subangular to sub-rounded gravel and 05% sub-rounded to angular cobble content of mixed lithology seasonal high-water table observed at 42"; apparent water observed at 43"; bedrock refusal at test hole depth.
R@43"					BEDROCK REFUSAL AT 43"

Depth to bedrock: \geq 79" \quad Seasonal High Groundwater Table: 42" Apparent water: 43"

TP22-16 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: 43 " (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 42" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical

Hardness: $\underline{\text { Soft } \quad \text { Boundary: Clear } \quad \text { Abundance: Many } \quad \text { Size: Fine and medium Contrast: Prominent }}$

Concentration color: 10R $4 / 8$ red
Reduction color: \qquad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole: Observed depth to stabilized phreatic water:
$42^{\prime \prime}$
43" inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\underline{2.83^{\circ}}$
Depth of naturally occurring pervious material in TP22-16
Upper boundary: $0 \mathbf{0 9 "}^{\prime \prime}$
Lower boundary: 43"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design 05/05/2022
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

Date of soil testing

TP22-17 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022
Landscape: Upland
Slope aspect: Level

Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landform: Marine terrace Position on landscape: Tread/ flat
Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded

Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet \quad Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE - TP22-17

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
00" $\rightarrow 09 \prime$	A	Sandy Loam	$\begin{gathered} \text { very dark } \\ \text { grayish brown } \end{gathered}$	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
09" \rightarrow 18"	B_{w}	Sandy Loam	$\begin{gathered} \text { 10YR } 4 / 4 \\ \text { dark yellowish } \\ \text { brown } \end{gathered}$	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$18 \prime \rightarrow 75 "$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 20 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 20 "; apparent water observed at $23 "$; no bedrock refusal at test hole depth.

Depth to bedrock: $>75^{\prime \prime}$
Seasonal High Groundwater Table: $\underline{20}^{\prime \prime}$
Apparent water: $23^{\prime \prime}$

TP22-17 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Apparent water seeping from pit face: $\underline{23 "}^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: \qquad (below land surface) Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 20" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: $10 \mathrm{R} 4 / 8$ red \quad Reduction color: \quad Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole: Observed depth to stabilized phreatic water:

20" inches below grade
23" inches below grade
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: 5.50^{\prime}

Depth of naturally occurring pervious material in TP22-17
Upper boundary: 09"
Lower boundary: 75"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310 CMR 15.027.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022
Date of soil testing

TP22-18 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: May 05, 2022 Weather: Overcast, $45^{\circ}-50^{\circ} \mathrm{F}$, East breeze, light rain.
Landscape: Upland Landform: Marine terrace Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-07 \%}$ Slope complexity: Simple Land Cover: Wooded
 Wetlands: $\underline{10^{+} \text {feet } \quad \text { Public water supply reservoir: } 400^{+} \text {feet Tributary to reservoir: } \underline{200^{+}} \text {feet }}$

SOIL PROFILE - TP22-18

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 10 "$	A	Sandy Loam	10YR $3 / 2$ very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
$10 " \rightarrow 21 "$	B_{w}	Sandy Loam	10YR 4/4 dark yellowish brown	none observed	Very friable; weak-grade, fine, sub-angular blocky structure; somewhat cohesive; mixed medium to mostly fine-grained mineral content; damp matrix; non-sticky; non-plastic; few fine-to-medium roots; abrupt wavy boundary.
$21 " \rightarrow 69 "$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 21 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; saturated matrix; sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; clayey; saturated matrix; seasonal high-water table observed at 21 "; apparent water observed at $23 "$; no bedrock refusal at test hole depth.

Depth to bedrock: $>69^{\prime \prime}$
Seasonal High Groundwater Table: 21"
Apparent water: 23 "

TP22-18 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:
Apparent water seeping from pit face: $23^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 21" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating sand grains
Location: In 2C matrix
Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: _ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: 4.92́ㅗㄴ
Depth of naturally occurring pervious material in TP22-18 Upper boundary: 10 "
Lower boundary: 69"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 10 CMR 15.017.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

05/05/2022
Date of soil testing

TP22-20 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: July 18, 2022 Weather: Overcast, $75^{\circ}-70^{\circ}$ F, East breeze, humid, light rain.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Property line: $\underline{10^{+} \text {feet } \quad \text { Drainage way: } 50^{+} \text {feet Drinking water well: } 100^{+} \text {feet Abutting septic system: } \underline{50^{+}} \text {feet }}$ Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE • TP22-20

Depth below land surface (inches)	Soil Horizon Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00^{\prime \prime} \rightarrow 28^{\prime \prime}$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR} 2 / 1}$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~ 95\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$28^{\prime \prime} \rightarrow 70^{\prime \prime}$	$2 \mathrm{C}_{1}$	Sand	2.5Y $5 / 3$ light olive brown	$\begin{gathered} 68 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; dry matrix; non-sticky; non-plastic; seasonal high-water table observed at 68 "; no apparent water observed; abrupt wavy boundary.
$70^{\prime \prime} \rightarrow 100 "$	$2 \mathrm{C}_{2}$	Silt Loam	Gley 2 6/5PB bluish gray		Firm; massive to platy structure; very fine-grained mineral content; dry matrix; somewhat sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; silty; no bedrock refusal at test hole depth.

Depth to bedrock: $\geq 100^{\prime \prime} \quad$ Seasonal High Groundwater Table: $68^{\prime \prime} \quad$ Apparent water:

TP22-20 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE: NONE OBSERVED

Apparent water seeping from pit face: \qquad (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Dry

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 68" (below land surface)
Kind: Iron concentrations; noncemented to somewhat cemented iron masses coating sand grains
Location: In 2C C_{1} matrix \quad Shape: Irregular/ spherical
Hardness: $\underline{\text { Soft } \quad \text { Boundary: Clear } \quad \text { Abundance: Many } \quad \text { Size: Fine and medium Contrast: Prominent }}$
Concentration color: 10R 4/8 red Reduction color: _ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
\qquad inches below grade

Observed depth to stabilized phreatic water: \qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\underline{6.00^{\prime}}$

Depth of naturally occurring pervious material in TP22-20

Upper boundary: 28"
Lower boundary: $10{ }^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310 CMR 15.017.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

$\underline{07 / 18 / 2022}$

Date of soil testing

TP22-21 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: July 18,2022
Landscape: Upland
Slope aspect: Level
Property line: 10^{+}feet
Wetlands: $\underline{10^{+} \text {feet }}$

Weather: Overcast, $75^{\circ}-70^{\circ} \mathrm{F}$, East breeze, humid, light rain.
Landform: Outwash plain Position on landscape: Tread/flat
Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Drainage way: 50^{+}feet Drinking water well: 100^{+}feet Abutting septic system: $\underline{50^{+} \text {feet }}$ Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE - TP22-21

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 20 "$	C^{\wedge}	Sandy Loam Fill mixture	$\underset{\text { black }}{10 \mathrm{YR}} 2 / 1$	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; ~95\% gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$20 " \rightarrow 80 "$	$2 \mathrm{C}_{1}$	Sand	2.5Y 5/3 light olive brown	$\begin{gathered} 59 " \\ (\mathrm{~m}, 1-2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Loose; single grained/ structureless; weakly stratified; noncohesive; mixed fine-to- medium grained mineral content; free of clasts; dry matrix; non-sticky; non-plastic; seasonal high-water table observed at $59^{\prime \prime}$; no apparent water observed; abrupt wavy boundary.
$80 " \rightarrow 103 "$	$2 \mathrm{C}_{2}$	Silt Loam	Gley 2 6/5PB bluish gray		Firm; massive to platy structure; very fine-grained mineral content; dry matrix; somewhat sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; silty; no bedrock refusal at test hole depth.

\qquad

TP22-21 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE: NONE OBSERVED

Apparent water seeping from pit face: \qquad (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Dry

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 59" (below land surface)
Kind: Iron concentrations; noncemented to somewhat cemented iron masses coating sand grains
Location: In $2 \mathrm{C}_{1}$ matrix \quad Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: __ Moisture state: Damp to wet

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
___ inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: ${ }^{6.92^{ }}$
Depth of naturally occurring pervious material in TP22-21
Upper boundary: 20"
Lower boundary: 103"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

07/18/2022
October 1998
Date of License issuance

Date of soil testing

TP22-46 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: December 06, 2022 Weather: Overcast, $40^{\circ}-45^{\circ}$ F, calm, damp.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Property line: $\underline{10^{+} \text {feet }}$ Drainage way: 50^{+}feet Drinking water well: $\underline{100^{+} \text {feet } \quad \text { Abutting septic system: } 50^{+} \text {feet }}$

SOIL PROFILE • TP22-46

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 05 \prime$	A	Sandy Loam	10YR 3/2 very dark grayish brown	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
05" \rightarrow 90"	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 21 " \\ (\mathrm{~m}, 2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; damp matrix; somewhat sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; silty; seasonal high-water table observed at 21 "; no apparent water observed; no bedrock refusal at test hole depth.

\qquad

TP22-46 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:
Apparent water seeping from pit face: \qquad (below land surface) Depth to stabilized apparent water: \qquad (below land surface) Soil moisture state: Damp

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 21" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating silt grains
Location: In 2C matrix Shape: Irregular/ spherical

Hardness: Soft	Boundary: Clear	Abundance: Many	Size: Fine and medium	Contrast: Prominent
	10R 4/8 red	Reduction color:	Moisture state: $\underline{\text { D }}$	

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
21" inches below grade

Observed depth to stabilized phreatic water: \qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\quad 7.08^{\circ}$
Depth of naturally occurring pervious material in TP22-46
Upper boundary: 05"
Lower boundary: $9 \mathbf{0 0}^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker

Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

12/06/2022
Date of soil testing

TP22-47 DEEP OBSERVATION HOLE
 163 Elm Street, Salisbury, Massachusetts

Date: December 06, 2022 Weather: Overcast, $40^{\circ}-45^{\circ} \mathrm{F}$, calm, damp.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $00-01 \%$ Slope complexity: Simple Land Cover: Gravel parking area
 Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE \downarrow TP22-47

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 08 \prime$	A	Sandy Loam	10YR 3/2 very dark grayish brow	none observed	Very friable; weak-grade fine-to-medium granular structure; somewhat cohesive; fine grained mineral content; damp matrix; non-sticky; non-plastic; many fine and few fine to medium roots; free of clasts; clear wavy boundary.
08" $\rightarrow 80 \prime$	2 C	Silt Loam	Gley 2 6/5PB bluish gray	$\begin{gathered} 22^{\prime \prime} \\ (\mathrm{m}, 2, \mathrm{p}) \\ 10 \mathrm{R} 4 / 8 \end{gathered}$	Firm; massive to platy structure; very fine-grained mineral content; damp matrix; somewhat sticky; non-plastic; poorly graded; free of clasts; dense matrix - tight in-situ; silty; seasonal high-water table observed at 22"; no apparent water observed; no bedrock refusal at test hole depth.

\qquad

TP22-47 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:
Apparent water seeping from pit face: \qquad (below land surface) Depth to stabilized apparent water: \qquad (below land surface)

Soil moisture state: Damp

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 22" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating silt grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R $4 / 8$ red \quad Reduction color: __ Moisture state: Damp

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
inches below grade inches below grade
\qquad inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $\underline{6.00^{\prime}}$
Depth of naturally occurring pervious material in TP22-47
Upper boundary: $\underline{08^{\prime \prime}}$
Lower boundary: $80^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance
with 310 CMR 15.017.

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

12/06/2022
Date of soil testing

TP22-48 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: December 06,2022 Weather: Overcast, $40^{\circ}-45^{\circ}$ F, calm, damp.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: Simple Land Cover: Gravel parking area Property line: $\underline{10^{+} \text {feet } \quad \text { Drainage way: } 50^{+} \text {feet Drinking water well: } 100^{+} \text {feet Abutting septic system: } 50^{+} \text {feet }}$ Wetlands: 10^{+}feet Public water supply reservoir: 400^{+}feet Tributary to reservoir: $\underline{200^{+} \text {feet }}$

SOIL PROFILE $>$ TP22-48

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 15 "$	C^	Sandy Loam Fill mixture	$10 Y R ~ 2 / 1$ black	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticy; non-plastic; damp; ~ 10-15\% gravel and cobble content: abrupt wavy boundary.	
$15 " \rightarrow 100 "$	2 C	Sand compact; clean fill without artifacts;			

TP22-48 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:

Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:

Depth of Estimated Seasonal High Groundwater Table: 49" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating silt grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: Moisture state: Damp

DETERMINATION OF HIGH GROUNDWATER ELEVATION

| Observed depth to redoximorphic features: | $\underline{49 "}$ | inches below grade |
| :--- | :--- | :--- | :--- |
| Observed water weeping from side of deep hole: | $\underline{62 "}$ | inches below grade |
| Observed depth to stabilized phreatic water: | $\underline{62 "}$ | inches below grade |

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $7.08^{\text {² }}$

Depth of naturally occurring pervious material in TP22-48
Upper boundary: $15^{\prime \prime}$
Lower boundary: $100^{\prime \prime}$

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.017.

October 1998
Alexander F. Parker
Date of License issuance
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
12/06/2022
Town of Salisbury Board of Health Witness
Date of soil testing

TP22-49 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

Date: December 06, 2022 Weather: Overcast, $40^{\circ}-45^{\circ} \mathrm{F}$, calm, damp.
Landscape: Upland Landform: Outwash plain Position on landscape: Tread/ flat
Slope aspect: Level Slope (\%): $\underline{00-01 \%}$ Slope complexity: $\underline{\text { Simple } \quad \text { Land Cover: Gravel parking area }}$

Wetlands: $\underline{10^{+} \text {feet } \quad \text { Public water supply reservoir: } 400^{+} \text {feet } \quad \text { Tributary to reservoir: } \underline{200^{+}} \text {feet }}$

SOIL PROFILE - TP22-49

Depth below land surface (inches)	Soil Horizon/ Layer	Soil Texture (USDA/ NRCS)	Soil Color (Munsell)	Redoxomorphic Features/ ESHGWT	Consistence, grade, size, structure, grain size, soil moisture state, roots, horizon boundary, clasts, stratification, artifacts, restrictive features, etc.
$00 " \rightarrow 09 "$	C^{\wedge}	Sandy Loam Fill mixture	10YR 2/1 black	none observed	Mechanically mixed anthropic layer; gravel parking area; structureless-massive; mixed fine-to-medium grained mineral content; non-sticky; non-plastic; damp; $\sim 10-15 \%$ gravel and cobble content: somewhat compact; clean fill without artifacts; abrupt wavy boundary.
$09 " \rightarrow 75^{\prime \prime}$	2 C	Sand	$2.5 Y$ 5/3 light olive brown	40" (m,1-2,p) 10R 4/8	Loose; single grained/ structureless; weakly stratified; non- cohesive; mixed fine-to- medium grained mineral content; free of clasts; damp matrix; non-sticky; non-plastic; seasonal high-water table observed at 40"; apparent water observed at 71"; no bedrock refusal at test hole depth.

Depth to bedrock: $\geq 75^{\prime \prime} \quad$ Seasonal High Groundwater Table: 40" Apparent water: 71"

TP22-49 DEEP OBSERVATION HOLE

163 Elm Street, Salisbury, Massachusetts

DEPTH TO PHREATIC GROUNDWATER TABLE:
Apparent water seeping from pit face: $71^{\prime \prime}$ (below land surface) Depth to stabilized apparent water: $7 \mathbf{7 1}^{\prime \prime}$ (below land surface) Soil moisture state: Damp to wet

ESTIMATED SEASONAL HIGH GROUNDWATER TABLE:
Depth of Estimated Seasonal High Groundwater Table: 40" (below land surface)
Kind: Iron concentrations; noncemented iron masses coating silt grains
Location: In 2C matrix Shape: Irregular/ spherical
Hardness: Soft Boundary: Clear Abundance: Many Size: Fine and medium Contrast: Prominent
Concentration color: 10R 4/8 red Reduction color: __ Moisture state: Damp

DETERMINATION OF HIGH GROUNDWATER ELEVATION

Observed depth to redoximorphic features:
Observed water weeping from side of deep hole:
Observed depth to stabilized phreatic water:
40" inches below grade
71 " inches below grade
71" inches below grade

DEPTH OF NATURALLY OCCURRING PERVIOUS MATERIAL: $5 \underline{5.50^{\circ}}$
Depth of naturally occurring pervious material in TP22-49 Upper boundary: $0 \mathbf{9 0}^{\prime \prime}$
Lower boundary: 75"

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance

Alexander F. Parker
Massachusetts Soil Evaluator \& License number
Unofficial testing for drainage design
Town of Salisbury Board of Health Witness

October 1998
Date of License issuance

12/06/2022

Date of soil testing

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
 Essex County, Massachusetts, Northern Part

163 Elm Street

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
Essex County, Massachusetts, Northern Part 13
16A—Scantic silt loam, 0 to 3 percent slopes 13
38A—Pipestone loamy sand, 0 to 3 percent slopes 14
255A-Windsor loamy sand, 0 to 3 percent slopes 15
255D-Windsor loamy sand, 15 to 25 percent slopes 16
256A—Deerfield loamy fine sand, 0 to 3 percent slopes 18
257E—Hinckley and Windsor soils, 25 to 35 percent slopes 19
712A—Ipswich and Westbrook mucky peats, 0 to 2 percent slopes, very frequently flooded 21
717E—Rock outcrop-Charlton-Hollis complex, 15 to 35 percent slopes 23
721D—Windsor-Rock outcrop complex, 15 to 25 percent slopes 26
Soil Information for All Uses 28
Soil Properties and Qualities 28
Soil Qualities and Features 28
Hydrologic Soil Group 28

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Bravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
© Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Essex County, Massachusetts, Northern Part Survey Area Data: Version 18, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2022—Jun 5, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
16A	Scantic silt loam, 0 to 3 percent slopes	0.0	0.0\%
38A	Pipestone loamy sand, 0 to 3 percent slopes	0.1	0.6\%
255A	Windsor loamy sand, 0 to 3 percent slopes	4.8	19.8\%
255D	Windsor loamy sand, 15 to 25 percent slopes	5.1	20.8\%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	4.3	17.7\%
257E	Hinckley and Windsor soils, 25 to 35 percent slopes	5.8	23.6\%
712A	Ipswich and Westbrook mucky peats, 0 to 2 percent slopes, very frequently flooded	2.1	8.4\%
717E	Rock outcrop-Charlton-Hollis complex, 15 to 35 percent slopes	0.1	0.4\%
721D	Windsor-Rock outcrop complex, 15 to 25 percent slopes	2.1	8.8\%
Totals for Area of Interest		24.5	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different
management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.
An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Essex County, Massachusetts, Northern Part

16A—Scantic silt loam, 0 to 3 percent slopes

```
Map Unit Setting
    National map unit symbol: vjrl
    Elevation: }10\mathrm{ to }900\mathrm{ feet
    Mean annual precipitation: }45\mathrm{ to }54\mathrm{ inches
    Mean annual air temperature: }43\mathrm{ to }54\mathrm{ degrees F
    Frost-free period: }145\mathrm{ to }240\mathrm{ days
    Farmland classification: Not prime farmland
Map Unit Composition
    Scantic and similar soils: }85\mathrm{ percent
    Minor components: }15\mathrm{ percent
    Estimates are based on observations, descriptions, and transects of the mapunit.
```


Description of Scantic

Setting

```
Landform: Drainageways, depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Dip
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Soft fine-silty glaciolacustrine deposits and/or soft fine-silty
glaciomarine deposits over hard fine-silty glaciolacustrine deposits and/or hard fine-silty glaciomarine deposits
```


Typical profile

```
H1-0 to 11 inches: silt loam
H2-11 to 26 inches: silty clay loam
H3-26 to 60 inches: clay
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high ( 0.00 to \(0.20 \mathrm{in} / \mathrm{hr}\) )
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 9.6 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C/D
Ecological site: F144AY019NH - Wet Lake Plain
Hydric soil rating: Yes
```


Minor Components

```
Maybid
Percent of map unit: 10 percent
```

Landform: Depressions
Hydric soil rating: Yes

Buxton

Percent of map unit: 5 percent
Hydric soil rating: No

38A—Pipestone loamy sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: vjpy
Elevation: 600 to 1,000 feet
Mean annual precipitation: 45 to 54 inches
Mean annual air temperature: 43 to 54 degrees F
Frost-free period: 145 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition

Pipestone and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pipestone

Setting

Landform: Terraces
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Loose sandy glaciofluvial deposits

Typical profile

O-0 to 3 inches: muck
H2-3 to 11 inches: loamy sand
H3-11 to 24 inches: loamy sand
H4-24 to 60 inches: stratified sand to fine sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00
to $20.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 18 to 41 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)
Interpretive groups
Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A
Ecological site: F144AY027MA - Moist Sandy Outwash
Hydric soil rating: Yes

Minor Components

Wareham

Percent of map unit: 10 percent
Landform: Terraces
Hydric soil rating: Yes

Scarboro

Percent of map unit: 7 percent
Landform: Terraces
Hydric soil rating: Yes

Deerfield

Percent of map unit: 3 percent
Hydric soil rating: No

255A-Windsor loamy sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2svkg
Elevation: 0 to 990 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 140 to 240 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor, loamy sand, and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor, Loamy Sand

Setting

Landform: Outwash plains, outwash terraces, deltas, dunes
Landform position (three-dimensional): Tread, riser
Down-slope shape: Linear, convex
Across-slope shape: Linear, convex
Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

O-0 to 1 inches: moderately decomposed plant material
A - 1 to 3 inches: loamy sand
Bw-3 to 25 inches: loamy sand

$$
\text { C-25 to } 65 \text { inches: sand }
$$

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2s
Hydrologic Soil Group: A
Ecological site: F144AY022MA - Dry Outwash
Hydric soil rating: No

Minor Components

Deerfield, loamy sand

Percent of map unit: 10 percent
Landform: Deltas, terraces, outwash plains
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Tread, talf
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Hinckley, loamy sand

Percent of map unit: 5 percent
Landform: Deltas, kames, eskers, outwash plains
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, rise
Down-slope shape: Convex
Across-slope shape: Convex, linear
Hydric soil rating: No

255D—Windsor loamy sand, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2svlb
Elevation: 0 to 1,290 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 140 to 240 days

Farmland classification: Not prime farmland

Map Unit Composition

Windsor and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor

Setting
Landform: Dunes, deltas, outwash terraces, outwash plains
Landform position (three-dimensional): Tread, riser
Down-slope shape: Convex, linear
Across-slope shape: Convex, linear
Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material
A-1 to 3 inches: loamy sand
Bw- 3 to 25 inches: loamy sand
C-25 to 65 inches: sand

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: A
Ecological site: F144AY022MA - Dry Outwash
Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent
Landform: Outwash plains, outwash terraces, moraines, stream terraces, eskers, kames
Landform position (three-dimensional): Rise
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No
Hinckley
Percent of map unit: 5 percent

Landform: Deltas, kames, eskers, outwash plains
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, rise
Down-slope shape: Convex
Across-slope shape: Convex, linear
Hydric soil rating: No

256A—Deerfield loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: $2 x f g 8$
Elevation: 0 to 1,100 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 145 to 240 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Deerfield and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerfield

Setting

Landform: Outwash terraces, outwash deltas, outwash plains, kame terraces Landform position (three-dimensional): Tread
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Parent material: Sandy outwash derived from granite, gneiss, and/or quartzite

Typical profile

Ap-0 to 9 inches: loamy fine sand
Bw-9 to 25 inches: loamy fine sand
$B C-25$ to 33 inches: fine sand
Cg-33 to 60 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very
high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 15 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Sodium adsorption ratio, maximum: 11.0

Custom Soil Resource Report

Available water supply, 0 to 60 inches: Moderate (about 6.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: A
Ecological site: F144AY027MA - Moist Sandy Outwash
Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 7 percent
Landform: Outwash terraces, kame terraces, outwash deltas, outwash plains
Landform position (three-dimensional): Tread
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

Wareham

Percent of map unit: 5 percent
Landform: Drainageways, depressions
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Sudbury

Percent of map unit: 2 percent
Landform: Outwash plains, kame terraces, outwash deltas, outwash terraces
Landform position (three-dimensional): Tread
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

Ninigret

Percent of map unit: 1 percent
Landform: Kame terraces, outwash plains, outwash terraces
Landform position (three-dimensional): Tread
Down-slope shape: Convex, linear
Across-slope shape: Convex, concave
Hydric soil rating: No

257E—Hinckley and Windsor soils, 25 to 35 percent slopes

Map Unit Setting

National map unit symbol: 2svm2
Elevation: 0 to 1,470 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 145 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 50 percent
Windsor and similar soils: 40 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting
Landform: Outwash deltas, outwash terraces, moraines, eskers, kames, outwash plains, kame terraces
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material
A-1 to 8 inches: loamy sand
Bw1-8 to 11 inches: gravelly loamy sand
Bw2-11 to 16 inches: gravelly loamy sand
$B C-16$ to 19 inches: very gravelly loamy sand
C-19 to 65 inches: very gravelly sand
Properties and qualities
Slope: 25 to 35 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to $1.9 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Low (about 3.1 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6 e
Hydrologic Soil Group: A
Ecological site: F144AY022MA - Dry Outwash
Hydric soil rating: No

Description of Windsor

Setting
Landform: Moraines, eskers, kames, outwash deltas, outwash terraces, outwash plains, kame terraces
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser
Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave
Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material
A - 1 to 3 inches: loamy sand
Bw - 3 to 25 inches: loamy sand
C - 25 to 65 inches: sand

Properties and qualities

Slope: 25 to 35 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: A
Ecological site: F144AY022MA - Dry Outwash
Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 10 percent
Landform: Kame terraces, outwash plains, kames, outwash terraces, moraines, eskers
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

712A—Ipswich and Westbrook mucky peats, 0 to 2 percent slopes, very frequently flooded

Map Unit Setting

National map unit symbol: 2tyqn

Elevation: 0 to 10 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 140 to 250 days
Farmland classification: Not prime farmland

Map Unit Composition

Ipswich and similar soils: 55 percent
Westbrook and similar soils: 30 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ipswich

Setting

Landform: Tidal marshes
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Partially- decomposed herbaceous organic material

Typical profile

Oe - 0 to 42 inches: mucky peat
Oa - 42 to 59 inches: muck

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.14 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to strongly saline (0.7 to 111.6 mmhos/cm)
Sodium adsorption ratio, maximum: 20.0
Available water supply, 0 to 60 inches: Very high (about 26.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8w
Hydrologic Soil Group: A/D
Ecological site: R144AY001CT - Tidal Salt Low Marsh mesic very frequently flooded, R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded Hydric soil rating: Yes

Description of Westbrook

Setting
Landform: Tidal marshes
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Partly-decomposed herbaceous organic material over loamy mineral material

Typical profile

Oe - 0 to 19 inches: mucky peat
Cg-19 to 59 inches: silt loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Very low to high (0.00
to $14.17 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to strongly saline (0.7 to 111.6 mmhos/cm)
Sodium adsorption ratio, maximum: 33.0
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8w
Hydrologic Soil Group: B/D
Ecological site: R144AY001CT - Tidal Salt Low Marsh mesic very frequently
flooded, R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded Hydric soil rating: Yes

Minor Components

Pawcatuck

Percent of map unit: 15 percent
Landform: Tidal marshes
Landform position (three-dimensional): Dip
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: R144AY001CT - Tidal Salt Low Marsh mesic very frequently
flooded, R144AY002CT - Tidal Salt High Marsh mesic very frequently flooded Hydric soil rating: Yes

717E—Rock outcrop-Charlton-Hollis complex, 15 to 35 percent slopes

Map Unit Setting

National map unit symbol: vjrb
Elevation: 0 to 260 feet
Mean annual precipitation: 45 to 54 inches
Mean annual air temperature: 43 to 54 degrees F
Frost-free period: 125 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition

Rock outcrop: 40 percent
Charlton and similar soils: 30 percent
Hollis and similar soils: 15 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rock Outcrop

Setting
Parent material: Granite and gneiss
Properties and qualities
Slope: 15 to 25 percent
Depth to restrictive feature: 0 inches to lithic bedrock

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8s
Hydric soil rating: Unranked

Description of Charlton

Setting
Landform: Ridges, hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Friable coarse-loamy eolian deposits over friable coarse-loamy
basal till derived from granite and gneiss

Typical profile

H1-0 to 4 inches: fine sandy loam
H2 - 4 to 28 inches: gravelly fine sandy loam
H3-28 to 60 inches: gravelly fine sandy loam

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: A
Ecological site: F144AY034CT - Well Drained Till Uplands
Hydric soil rating: No

Description of Hollis

Setting

Landform: Ridges, hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Shallow, friable loamy eolian deposits over granite and gneiss

Typical profile

O-0 to 1 inches: muck
H2-1 to 6 inches: fine sandy loam
H3-6 to 17 inches: gravelly fine sandy loam
H4-17 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 10 to 60 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: D
Ecological site: F144AY033MA - Shallow Dry Till Uplands
Hydric soil rating: No

Minor Components

Sutton
Percent of map unit: 5 percent
Hydric soil rating: No

Chatfield

Percent of map unit: 5 percent
Hydric soil rating: No

Leicester

Percent of map unit: 5 percent
Landform: Depressions
Hydric soil rating: Yes

721D—Windsor-Rock outcrop complex, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2w2x7
Elevation: 90 to 350 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 140 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition

Windsor and similar soils: 55 percent
Rock outcrop: 30 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor

Setting

Landform: Deltas, outwash terraces, dunes, outwash plains
Landform position (three-dimensional): Riser
Down-slope shape: Linear, convex
Across-slope shape: Linear, convex
Parent material: Loose sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material
A-1 to 3 inches: loamy sand
Bw-3 to 25 inches: loamy sand
C-25 to 65 inches: sand
Properties and qualities
Slope: 15 to 25 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to $99.90 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)
Interpretive groups
Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: A
Ecological site: F144AY022MA - Dry Outwash
Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Ridges, hills
Parent material: Igneous and metamorphic rock

Typical profile

R - 0 to 79 inches: bedrock

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: 0 inches to lithic bedrock
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 $\mathrm{in} / \mathrm{hr}$)
Available water supply, 0 to 60 inches: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 8
Hydric soil rating: Unranked

Minor Components

Wareham

Percent of map unit: 8 percent
Landform: Drainageways, depressions
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Scarboro

Percent of map unit: 7 percent
Landform: Depressions, drainageways
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Essex County, Massachusetts, Northern Part Survey Area Data: Version 18, Sep 9, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2022—Jun

 5, 2022The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table-Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
16A	Scantic silt loam, 0 to 3 percent slopes	C/D	0.0	0.0\%
38A	Pipestone loamy sand, 0 to 3 percent slopes	A	0.1	0.6\%
255A	Windsor loamy sand, 0 to 3 percent slopes	A	4.8	19.8\%
255D	Windsor loamy sand, 15 to 25 percent slopes	A	5.1	20.8\%
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	A	4.3	17.7\%
257E	Hinckley and Windsor soils, 25 to 35 percent slopes	A	5.8	23.6\%
712A	Ipswich and Westbrook mucky peats, 0 to 2 percent slopes, very frequently flooded	A/D	2.1	8.4\%
717E	Rock outcrop-CharltonHollis complex, 15 to 35 percent slopes		0.1	0.4\%
721D	Windsor-Rock outcrop complex, 15 to 25 percent slopes	A	2.1	8.8\%
Totals for Area of Interest			24.5	100.0\%

Rating Options-Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
15.0 APPENDIX IH- WATERSHED PLANS

[^0]: ${ }^{1}$ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.
 ${ }^{2}$ For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

